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In this paper we present the foundation of a unified, object-oriented, three-dimensional
biomodelling environment, which allows us to integrate multiple submodels at scales from
subcellular to those of tissues and organs. Our current implementation combines a modified
discrete model from statistical mechanics, the Cellular Potts Model, with a continuum
reaction–diffusion model and a state automaton with well-defined conditions for cell
differentiation transitions to model genetic regulation. This environment allows us to rapidly
and compactly create computational models of a class of complex-developmental
phenomena. To illustrate model development, we simulate a simplified version of the
formation of the skeletal pattern in a growing embryonic vertebrate limb.
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1. INTRODUCTION

New information about the many specific biological
mechanisms acting at various scales in multicellular
organisms is inspiring increasing collaboration between
experimentalists and modellers to build predictive
simulations of complex biological phenomena. Such
simulations must describe interactions among com-
ponents at the various natural biological scales
(molecular, subcellular, cellular and supracellular).
While individual organisms and organs have very
different structures and behaviours, many of the
underlying interactions and components are the same.
Thus we can greatly reduce the burden of simulation by
building a software framework that includes the
fundamental mechanisms and objects important to
development, and allows us to specify them and their
interactions in a compact way.

In this paper, we adopt this approach to provide
a three-dimensional environment for modelling
ress: AgResearch Limited, Ruakura Research Centre,
amilton, New Zealand.
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morphogenesis and pattern formation, the generation
of three-dimensional structures and arrangements of
cells in an organism or its organs, during embryonic
development. A version of the code is available as
the CompuCell3D1 project on the Web. Morphogen-
esis involves differentiation, growth, death and
migration of cells, as well as changes in the shapes
of cells and tissues and the secretion and absorption
of extracellular materials.

Figure 1 shows the hierarchy of scales our
computational environment includes (see table 1 for
the corresponding spatial and temporal scales).
Information usually flows from finer to coarser scales,
but can flow between any pair of submodels. For
example, cells can secrete peptide signalling factors
under certain conditions, and such factors may act as
morphogens, which modify the type of the secreting
cell or its neighbours. In this case, a supracellular
diffusant affects a subcellular differentiation state.
Section 2 justifies our modelling approach and §3
provides biological descriptions of phenomena
J. R. Soc. Interface (2005) 2, 237–253
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Figure 1. Hierarchy of scales from molecule to organ, and the corresponding mechanisms and modelling approaches.
Models/subsystems at coarser scales use information from finer scales. See table 1 for length and time-scales.

2http://www.physiome.org.
3http://www.ibiblio.org/virtualcell/index.htm.
4http://www.accelrys.com/about/msi.html.

238 Three-dimensional modelling of morphogenesis R. Chaturvedi and others
occurring at different scales and their interactions.
We then provide details on each of the blocks in
figure 1: §4.1 describes the cell-scale submodel, the
Cellular Potts Model (CPM), which is the core
module of the computational environment. Sections
4.2 and 4.3 describe molecular-scale submodels, §4.4
a phenomenological, subcellular submodel of the gene
regulatory network, and §§4.5 and 4.6 the complete
organ-scale model. Our implementation of a compu-
tational environment for morphogenesis allows us to
construct computer models within the environment,
enabling us to study the parameter-rich complexity
of the complete biological models that result from
webs of interactions between the components of the
hybrid model. The software implementation of
models requires specification of (i) the submodel
components, (ii) the interfaces between interacting
submodels and (iii) a simulation protocol that
specifies the spatial and temporal order in which
the component submodels execute.
J. R. Soc. Interface (2005)
What justifies a multiscale modelling approach, and
why is the cell the natural level of detail to begin with?
Macroscopic models, such as Physiome2, which treat
tissues as continuous substances with bulk mechanical
properties, reproduce many biological phenomena but
fail when biological structure develops and functions at
the cell scale. Often, direct, cell-level model implemen-
tations reproduce phenomena which we see in experi-
ments, but which the continuum model misses.
Continuum models to describe materials such as bone,
extracellular matrix (ECM), fluids and diffusing
chemicals are, however, much less computationally
costly than cell-level, development models. Molecular
and subcellular models such as V-cell3 or BioSym4

provide detail on aspects of subcellular processes, but
often cannot describe even one complete cell, let alone

http://www.physiome.org
http://www.ibiblio.org/virtualcell/index.htm
http://www.accelrys.com/about/msi.html


Table 1. Summary of multiscale models.

submodel mechanism modelling approach length scale time scale

1 dynamics of morphogen fields activator, TGF-b and inhibitor interact-
ing via reaction–diffusion PDEs

mm!10 to
mm!10K1

s!10 to min

2 establishment of fibronectin field a grid to accumulate fibronectin secreted
by cells, modelled using the Cellular
Potts Model

mm min

3 upregulation of cell–cell adhesivity individual cell’s gene network modelled
using ordinary differential equations

mm!10 min

4 dynamics of cells and their response
to morphogen fields

Cellular Potts Model mm min

5 mitosis an ad hoc approach based on a ‘breadth-
first’ search incorporated into
CompuCell

mm min

6 geometry of the limb space simplified into a three-dimensional
rectangular domain

mm to cm h

7 definition of subzones in the spatial
domain in which mechanisms 1–5
are active

division of discretized space into zones mm!10K1

to mm
h

8 terminal differentiation once the
desired patterns have formed

based on visualization and observation:
consistent with standard biochemical
mechanisms

mm!10 min

9 domain growth ad hoc, to allow enough condensation
time

mm!100
to mm

h–d

day 4

day 5

day 6

day 7

Figure 2. Skeletal pattern formation—time-series of chick
limb-bud development in longitudinal section. For each
figure, proximal is to the left, distal to the right, anterior up
and posterior down. Black represents differentiated cartilage
and stipple precartilage condensation. The single bone on the
left of each figure is the humerus, the two bones in the mid-
limb are the radius and ulna, and the three bones that form at
the distal end, beginning on day 6, are the digits (based on
Newman & Frisch 1979).
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many cells acting in concert. Even a hypothetical
‘perfect’ single cell model (which is probably
computationally unfeasible) would not provide an
understanding of how cells function in intact organisms.
Instead, stoichiometric and reaction kinetics (RK)
approaches can efficiently and realistically model cell
differentiation and metabolism. A cell-level model such
as the CPM can simulate 105–106 cells on a single
processor, making organism-scale simulations practical
on parallel computers. When appropriate, cell-level
models can supply parameters to, and interface
with, continuum models, accept parameters from
microscopic models, or use phenomenological models
of subcellular properties. In this respect, biological
modelling is easier than materials modelling, which
lacks the natural mesoscopic level of the cell to
interpolate between molecule and continuum.

As an example of such model descriptions, we use the
general biological concept that interactions of cells via
gene products (i.e. molecules synthesized by gene
transcription and translation, and their derivatives)
generate biologically significant patterns that we can
describe mathematically and implement computa-
tionally (Newman & Frisch 1979; Meinhardt 1982;
Graner & Glazier 1992; Glazier & Graner 1993; Jiang
et al. 1998; Zeng et al. 2003; Hentschel et al. 2004;
Kiskowski et al. 2004). Gene products may reside inside
a cell, on the cell surface, or cells may secrete them.
Secreted gene products may remain at their secretion
location or diffuse or advect, possibly over long
distances. In this paper, we neglect the advection of
gene products and consider only their diffusion (see §3
for a justification); we do include motion of cells and
their surrounding medium.

As an example of implementing a specific, though
simplified, developmental simulation within our
J. R. Soc. Interface (2005)
computational environment, we construct a model of
the dramatic patterning of developing cartilage
(i.e. spatio-temporal chondrogenesis) which occurs in
the predifferentiated mass of mesenchymal cells during
the embryonic growth of the early-stage avian limb bud
(figure 2).

The developing vertebrate limb progressively gen-
erates a sequence of increasing numbers of cartilage
elements from the body-wall outwards (proximo-distally;
see figure 2). In a forelimb, this sequence is (i) humerus,



5http://www.neuron.yale.edu/neuron.
6http://www.physiome.org.
7http://www.nd.edu/wlcls/compucell/twodim.htm.
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(ii) radius and ulna, (iii) carpals and metacarpals
and (iv) digits. The hindlimb displays a similar pattern:
(i) femur, (ii) tibia and fibula, (iii) tarsals and
metatarsals and (iv) digits. Independent of limb type,
element (i) is the stylopod, element set (ii) the
zeugopod, and element sets (iii) and (iv), the autopod.

The developing limb presents a number of distinct
problems in growth and patterning. How does the gene
expression programme interact with generic, dynamic,
physical and chemical mechanisms to form an organ?
What is the relative contribution of local and long-
range signalling?What are specific factors that result in
abnormal growth? To succeed, our model must
reproduce both normal and abnormal development,
and should suggest mechanisms for observed
pathologies.

To answer these questions, we need to develop a
predictive model. Distinguishing between experimen-
tal biological, mathematical and computational
models clarifies model building. Limbs display a
great variety of structures and functions of varying
degrees of organizational complexity. For example,
the adaptations of limbs can range from the flippers of
a dolphin to the wings of a bird, the hoofed feet of
horses, and the dexterous forelimbs of humans. We
need to organize our biological study in a manner that
clarifies the underlying unity of structure, function
and organizational principles, while allowing elabor-
ations to explain specific differences. Continuing with
our example, the chicken limb is a widely-studied
experimental model (both in vivo and in vitro) of
vertebrate morphogenesis and pattern formation. The
first step in our simulation strategy is to abstract from
the observed experimental behaviours a computation-
ally tractable biological model. Diagrams of biochemi-
cal pathways or cell migration are examples of such
biological models. We then construct a mathematical
model to quantitatively express the phenomena the
biological model describes. The mathematical model
consists either of sets of differential equations or
algorithms, or a combination of the two. We need
idealizations to simplify the observed phenomena at
this step, but the mathematical model must be rich
enough to capture the range of phenomena we wish to
predict.

Even idealizations of the simplest organisms are
generally too complex to permit us to solve the
mathematical models analytically; hence we translate
the mathematical model into a computer model or
simulation. The commonality of biological processes
allows us to build a modelling framework, which
permits simple, compact and efficient implementation
of mathematical models as computational models. We
use the modelling framework to build a composite
model of the complex web of interactions of the
mathematical model, using submodels representing
different scales. To be extensible and reusable (i.e.
able to accommodate model elaborations and changes
without requiring rewriting of basic code) the compu-
tational environment must be modular (i.e. constructed
from well-defined, independent components), with well-
defined interfaces through which the various submodels
interact, allowing us to construct new objects and
J. R. Soc. Interface (2005)
submodels. Flexibility is essential because of the
current rapid growth in our knowledge of cellular and
subcellular mechanisms. Neuron5 and Physiome6 are
examples of such frameworks.

Multiscale, experimentally motivated simulations
have successfully used the CPM to reproduce morpho-
logical phenomena in the cellular slime mould
Dictyostelium discoideum (Marée & Hogeweg 2001,
2002), vascular development (Merks et al. 2004),
vertebrate neurulation (Kerszberg & Changeux 1998)
and convergent extension (Zajac et al. 2000, 2003; Zajac
2002). Chaturvedi et al. (2003), and Later Izaguirre
et al. (2004), described a simplified, two-dimensional
environment, CompuCell7, which integrated discrete
and continuum models of biological mechanisms.
A highly simplified, sample simulation in this environ-
ment reproduced the proximo-distal increase in the
number of skeletal elements in the developing avian
limb. This paper emphasizes the modelling issues
involved in extending the software framework to three
dimensions, and implements an experimentally motiv-
ated sample simulation of a model of limb development
that corresponds more closely to the biological reality
(Hentschel et al. 2004). Using this model, we simulate
two pathological cases of limb development in addition
to normal development.
2. MODELLING ORGANOGENESIS

Organogenesis is the development of organs in living
organisms, including their morphogenesis and pattern
formation. Our software framework for organogenesis
includes three major submodels: the discrete stochastic
CPM for cell dynamics, continuum reaction–diffusion
(RD)partialdifferential equations (PDEs) formorphogen
production and diffusion, and a type-change map for
genetic regulation.

Why do we need cell-level models for organogenesis?
Traditionally, models dealing with organogenesis, e.g.
the two-dimensional continuum model of chicken limb
development in Hentschel et al. (2004), treat both cells
and morphogens as continuous fields. Continuum
models work well for diffusing chemicals, whose distri-
bution varies over distances much larger than a cell
diameter. Modelling the motion of individual morpho-
gen molecules would require a tremendous amount of
computer time. By treating their concentrations as
continua, we take advantage of computationally effi-
cient, optimal, standard numerical schemes for RD
PDEs for secreted morphogens. Models at the cell scale
require representation of individual cells, which change
shape and association with other cells (see Graner &
Glazier 1992, Glazier & Graner 1993) and ECM (see
Newman & Frisch 1979; Zeng et al. 2003) when forming
different kinds of tissues (epithelia, cartilage, etc.;
Hentschel et al. 2004). Cells also move considerable
distances during organogenesis, so treating them as a
continuum field would require numerical solutions of

http://www.neuron.yale.edu/neuron
http://www.physiome.org
http://www.nd.edu/~lcls/compucell/twodim.htm
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Figure 3. Schematic diagram of chick-limb organogenesis at
mid-development (corresponding to day 5 in figure 2),
showing primary axes. The earliest-developing region of the
skeleton has differentiated into cartilage (black) by this stage.
The region in which the skeletal pattern is forming is
undergoing mesenchymal condensation (medium grey). The
digits at the distal tip have not yet begun to form.
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advection PDEs, which are computationally costly and
numerically unstable.

Organogenesis is essentially three-dimensional; it
depends on three-dimensional cell rearrangement into
well-organized structures. Although two-dimensional
simulations provide helpful qualitative insights using
limited computer resources (Chaturvedi et al. 2003;
Izaguirre et al. 2004), understanding symmetries and
symmetry breaking during organogenesis requires
three-dimensional modelling and simulation; three-
dimensional mathematical and physical models differ
qualitatively from those in two dimensions.

For example, in the CPM component of our chick-
limb model, a third dimension allows cells to move
around barriers, relaxing two-dimensional constraints
on producing specific cell-condensation-dependent
tissue structures (e.g. the nodular and bar-like pre-
cartilage primordia involved in skeletogenesis). In the
RD part of the chick-limbmodel, morphogens and other
secreted components serve as both inductive signals (i.e.
altering cell type) and haptotactic signals (i.e. inducing
preferential cell movement up a gradient of an insoluble
ECMmolecule; see below). A requirement specific to the
three-dimensional RD submodel is that the morphogen
patternsmust display simultaneous spot-like and stripe-
like behaviour (§4.2.2; Murray 1993). In this paper we
use a biologically motivated RDmodel which Hentschel
et al. (2004) proposed and solved in two dimensions, but
which lacked simultaneous spot and stripe behaviour.
These RD equations in three dimensions require
additional stabilizing cubic terms, making them struc-
turally more complex than the two-dimensional
equations (for details, see §4.2).
3. BIOLOGICAL BACKGROUND: MULTIPLE
SCALES IN LIMB ORGANOGENESIS

Cell condensation is a critical stage in chondrogenesis
(Hall & Miyake 2000) (figure 2 shows the stages of
chondrogenesis in the chicken limb). Why and how do
the initially dispersed mesenchymal cells cluster at
specific locations within the paddle-shaped tissue
mesoblast that emerges from the body wall, and how
do they form the precartilage template for the limb
skeleton? While genes specify the proteins (both
intracellular and secreted into extracellular space)
necessary for morphogenesis, the genes do not, by
themselves, specify the distribution of these proteins
or their physical effects. Generic physical mechanisms
complement and enable the genetic mechanisms
(Newman & Comper 1990). Generic mechanisms (in
the context of tissue mechanics) are physical mech-
anisms common to both living and non-living viscoe-
lastic or excitable materials, which translate gene
expression into mechanical behaviour (Newman &
Comper 1990) and also dynamic chemical processes
that regulate the state of chemical reactors, including
cells (Newman & Forgacs 2005). The regulation of
gene expression is one important aspect of develop-
ment, but a full description of development requires
incorporation of the thermodynamics and mechanics
of condensed matter, as well as the pattern-forming
J. R. Soc. Interface (2005)
instabilities of excitable media at the scales of tissues,
organs and organisms.

Figure 3 is a schematic of the major axes and the
progress of chondrogenesis of a developing vertebrate
forelimb. The humerus has already differentiated
(black); the radius and ulna are forming (medium
grey). The wrist bones and digits are still to form.

Limbs in chickens and other vertebrates arise from
a mesoblast, consisting of two main populations of
predifferentiated mesenchymal cells, precartilage and
premuscle cells (reviewed in Newman 1988) covered by
a skin, or ectoderm. To start with, precartilage cells
pack loosely in the mesoblast. Subsequently, they
divide and change position under various influences,
finally condensing into patterns that prefigure the
bones. As the limb bud elongates, subpopulations of
precartilage cells successively condense and differen-
tiate into chondrocytes, beginning in the proximal
(nearer to body) region and eventually extending to
the distal (far from body) region of the growing limb
bud. The distal-most region (the apical zone) progres-
sively shortens in the proximo-distal direction and
remains in the predifferentiated mesenchymal state
until skeletal development is complete. The ectoderm,
a thin sheet of cells tightly attached to one another
laterally, ensheathes the mesoblast. The narrow
protrusion of the ectoderm that runs in an antero-
posterior direction along the distal tip of the limb bud
is the apical ectodermal ridge (AER). An apically
localized source of fibroblast growth factors (FGFs; see
below), which the AER provides under normal
circumstances, is necessary for proximo-distal develop-
ment of the skeleton. The initial precartilage mesen-
chymal cell type differentiates into other cell types
under the influence of various signals. At sites of
condensation, cells differentiate into cartilage; at other
sites they differentiate into connective tissue (tendon,
muscle-associated supporting tissue and, in certain
species, interdigital webs) or undergo apoptosis
(programmed cell death). The muscle cells of the
limb differentiate from a separate population of limb
mesenchymal cells (Newman 1988).

Key mechanisms in chondrogenesis include cell
motility, and adhesion between different types of cells
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and between cells and the ECM (Hall & Miyake 2000).
Some ECM components are non-diffusing secreted
proteins and other polymeric molecules which act as
scaffolds or attachment substrata (e.g. fibronectin).
The mesenchymal cells distribute uniformly through-
out the ECM, which also provides a medium through
which morphogens diffuse.

Secreted components have various dynamics and
effects. Experiments on the initiation and arrangement
of individual skeletal elements in the chicken and the
mouse suggest that the secreted morphogens TGF-b,
FGF-2 and FGF-8 are key molecules (see Hentschel
et al. 2004 for a review). Experiments (Frenz et al.
1989a,b; Downie & Newman 1995; Gehris et al. 1997)
show the importance of fibronectin in chondrogenesis.
Simulations (Zeng et al. 2003, 2004; Kiskowski et al.
2004; Zeng 2005) of disk-shaped, high-density (micro-
mass) cultures of limb precartilage mesenchyme,
suggest that chondrogenic patterns result from hapto-
taxis (cell movement up or down gradients either of
bound chemicals or mechanical properties of the
substratum) of cells in response to fibronectin gradi-
ents. Fibronectin is a large molecule, which does not
diffuse like TGF-b (Lander et al. 2002), although it can
spread from its point of production by other mechan-
isms (Wierzbicka- Patynowski & Schwarzbauer
2003). In our model, we consider two main secreted
components—TGF-b, which diffuses through the
mesoblast (inclusive of cells and ECM), and fibronec-
tin, which accumulates at sites of secretion. The
ground substance of the mesoblast is a dilute aqueous
gel containing the glycosaminoglycan (tissue polysac-
charide) hyaluronan. We assume that this gel supports
the cells and provides a medium for diffusion of TGF-
b, and a hypothesized inibitor of chondrogenesis (see
below), and for accumulation of fibronectin. This gel,
and the cells it supports, both move as the limb grows.
We assume that this motion is very slow compared
with the morphogens’ diffusion speed. This assumption
allows us to neglect advection of morphogens by
the ECM.

We assume that TGF-b triggers the precartilage
mesenchymal cells’ differentiation into cells capable of
producing fibronectin (Leonard et al. 1991). Cells
respond to fibronectin by undergoing haptotaxis up
gradients of this ECM protein. In addition, TGF-b
upregulates production of the cell–surface molecule
N-cadherin, which regulates cell–cell adhesivity
(Oberlender & Tuan 1994; Tsonis et al. 1994)

TGF-b can diffuse through the mesoblast. Similar
to its action in other mesenchymal tissues (Van
Obberghen-Schilling et al. 1988), it is positively auto-
regulatory in the limb (Miura & Shiota 2000a).
Together with a lateral inhibitor of its action or its
downstream effectors (Moftah et al. 2002), it can
potentially form patterns via RD (Miura & Shiota
2000a,b; Miura et al. 2000; Moftah et al. 2002). Since
TGF-b also induces cells to produce fibronectin and
upregulates cell–cell adhesivity (Tsonis et al. 1994), it
recruits neighbouring cells into chondrogenic conden-
sations (Frenz et al. 1989a,b). Cells in the embryo of the
fruitfly Drosophila melanogaster respond to DPP, a
secreted TGF-b-like morphogen, according to distinct
J. R. Soc. Interface (2005)
concentration thresholds (Nellen et al. 1996). We have
assumed a similar threshold response of mesenchymal
cells to TGF-b.

We can consider the developing limb as containing
three zones—the apical zone where only cell division
takes place, an active zone, where cells rearrange
locally into precartilage condensations, and a frozen
zone, in which condensations have differentiated into
cartilage and no additional patterning takes place. Cell
division continues in both active and frozen zones
(Lewis 1975). Biologically, distance from the AER,
which the concentrations of a subset of the FGFs may
signal, may define the zones (Hentschel et al. 2004);
however, for simplicity, we assume the zones a priori.

To summarize, the biological framework of the
model we develop in this paper considers the following
sequence of events during limb formation. (i) The limb
bud initially consists of predifferentiated mesenchymal
cells in the ECM gel, packing loosely in the mesoblast,
which can translocate, divide and produce various
morphogens and ECM molecules. (ii) The limb bud has
apical, active and frozen zones at different distances
from the limb tip, which vary in cellular activity. Cells
in the active zone are of a type distinct from those in
the apical zone: the former, for instance, can respond to
morphogens. (iii) The cells produce TGF-b and its
inhibitor, which diffuse through the mesoblast. (iv) If
TGF-b (i.e. activator) concentration at a cell location
in the active zone is above the response threshold for
the cell, the original cell differentiates into another
type that can produce fibronectin. Cells exposed to
TGF-b also upregulate their adhesivity. (v) Cells
surrounded by fibronectin experience an energy barrier
to leaving this microenvironment. Cells that have not
experienced local threshold levels of activator can
respond to, but not produce, fibronectin. (vi) All cell
types divide. Consequently, the limb domain grows,
with corresponding changes in the boundaries of the
three zones.
4. PHYSICAL AND MATHEMATICAL
SUBMODELS AND THEIR INTEGRATION

We describe below specific physical and mathematical
representations of key biological mechanisms opera-
ting at the various scales of our model. Table 1 sum-
marizes the mechanisms and the corresponding
submodels, and their characteristic spatial and
temporal scales. For each mechanism, a specific
parameter controls the behaviour of the corresponding
submodel. Table 2 lists important mechanisms and
their control parameters.
4.1. Modelling cellular and tissue scales: the
CPM framework

Cell-scale processes are the basis for the complexity of
highly-evolved multicellular organisms, as well as
colonies of unicellular ones. In multicellular organisms,
ECM plays an important role (§3). We can model ECM
components either at the scale of cells or smaller scales.
In this paper, we choose to model the ECM gel at the
cell scale, and fibronectin at a finer scale.
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Figure 4. The CPM grid and representation of cells and ECM.
The shading denotes the cell type. Different cells (e.g. cells 1
and 3) may be of the same cell type. We also show the fourth-
neighbour interactions of voxel S on a two-dimensional grid.

Table 2. Specific roles of important parameters.

phenomenon governing parameter equation

cell clustering Jt;t0 first term in equation (4.2), detailed in
equation (4.3) (CPM)

limb prepatterning and patterning can equivalently use either of the
following: Dx/Dy , g

RD equations (4.15) and (4.16)

haptotaxis m(s) equation (4.5)
cell volume ls and vtarget equation (4.5)
cell growth leading to mitosis vtarget as a function of time equation (4.5)
membrane fluctuations T equation (4.1) Boltzmann dynamics in

the CPM
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4.1.1. Physics of cell sorting. Condensation requires
sorting of similar types of cells into cell clusters.
Steinberg disaggregated cells, re-mixed them
randomly, and found that they sorted into coherent
clusters of similar cell types (Steinberg 1963, 1998). He
proposed the differential adhesion hypothesis (DAH),
which states that cells adhere to each other with
different strengths depending on their types. Cell
sorting results from random motions of the cells that
allow them to minimize their configuration energy; this
phenomenon is analogous to the surface-tension-driven
phase separation of two immiscible liquids. If cells of
the same type adhere more strongly, they gradually
cluster together, with less adhesive cells surrounding
the more adhesive ones. Differential adhesion results
from differences (controlled at the subcellular level) in
the expression of adhesion molecules on cell
membranes, which may vary both in quantity and
identity (Oberlender & Tuan 1994; Tsonis et al. 1994).

Based on the physics of the DAH, we model adhesive
phenomena as variations in cell-specific adhesivity at the
cell level, rather than at the level of individual molecules
and their interactions. Simple thermodynamics then
accounts for the macroscopic behaviour of cell mixtures
at the scale of cell aggregation into tissues.

4.1.2. The extended CPM framework. Glazier &
Graner’s original CPM provided a physical formalism
for studying the implications of the DAH (Glazier &
Graner 1993).TheCPMgeneralizes the Isingmodel, and
shares the Isingmodel’s core idea of modelling dynamics
based on energy minimization under imposed fluctu-
ations. As long as we can describe a process in terms of a
real or effective potential energy, we can include it in the
CPM framework by adding it to the other terms in the
energy. We extend the original CPM framework to (i)
model haptotaxis by adding an extra chemical potential
term to the original CPM energy, (ii) include time
variation in the adhesivity of cells, (iii) accommodate
cell growth and (iv) provide a phenomenological
mechanism for cell division (mitosis).

4.1.3. Modelling living cells and ECM (discrete rep-
resentation on a grid). The CPM uses a lattice to
describe cells. We associate an integer index to each
lattice site (voxel) to identify the space a cell occupies
at any instant (figure 4). The value of the index at a
lattice site (i, j, k) is s if the site lies in cell s. Domains
(i.e. collection of lattice sites with the same index)
J. R. Soc. Interface (2005)
represent cells. Thus, we treat a cell as a set of discrete
subcomponents that can rearrange to produce cell
motion and shape changes. Figure 4 shows three cells
and the ECM, which require four distinct indices.

We model ECM as a set of generalized cells with
distinct indices, unless a specific component of the ECM
requires more detailedmodelling (e.g. fibronectin, §4.3).

We model some cell behaviours on the lattice
employed by the CPM, but others, which have different
dynamics, require modelling outside the CPM frame-
work. Growth and division are examples of cell
behaviours that we describe on the CPM grid, but
require additional dynamics or conditions. Cell differ-
entiation requires modelling the gene regulatory
network, which controls the CPM parameters; it
requires a separate, microscopic submodel, and inte-
gration into the hybrid environment.

To model cell dynamics, the CPM uses an
effective energy, E, which consists of true energies
(e.g. cell–cell adhesion) and terms that mimic energies
(e.g. the response of a cell to a chemotactic gradient).
Cells evolve under strong damping. The dynamics
penalizes disconnected domains of lattice sites with
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the same index. Several investigators have used the
CPM to reproduce the behaviour of cell aggregates of
different kinds in two dimensions and three dimensions
(Upadhyaya 2000; Marée & Hogeweg 2001; Ouchi et al.
2003).

4.1.4. Dynamics of cell rearrangement. In mixtures of
liquid droplets, thermal fluctuations of the droplet
surfaces cause diffusion (Brownian motion), leading to
minimization of surface energy. We model membrane
fluctuations as simple thermal fluctuations. The fluctu-
ations drive the cells’ configuration to a global energy
minimum, rather than to one of themultiple local minima
of energy that can coexist. We phenomenologically
assume that an effective temperature, T, drives cell
membrane fluctuations. T defines the size of the typical
fluctuation. We implement fluctuations using the Metro-
polis algorithm for Monte-Carlo Boltzmann dynamics
(Glazier & Graner 1993; Zeng et al. 2003). If a proposed
change in lattice configuration (i.e. a change in the indices
associatedwith thevoxels of the lattice)produces a change
in effective energy, DE, we accept it with probability:

PðDEÞ ¼ 1; DE%0;

PðDEÞ ¼ eKDE=kT ; DEO0;

)
(4.1)

where k is a constant converting T into units of energy.
E includes terms to describe each mechanism we

have decided to include, e.g.

E ZEcontact CEvolume CEchemical: (4.2)

We describe each of these terms below.

4.1.5. Cell–cell adhesion. In equation (4.2), Econtact

phenomenologically describes the net adhesion/
repulsion between two cell membranes. It is the product
of the binding energy per unit area, Jt;t0 , and the area of
interaction of the two cells. In our model, Jt;t0 depends
on the specific properties of the interacting cells.

Econtact¼
X

ði;j;kÞði 0;j 0;k 0Þ
JtðsÞt0ðs0Þð1Kdðsði; j; kÞ; s0ði 0; j 0; k 0ÞÞÞ;

(4.3)

where the Kronecker delta, d(s, s 0)Z0 if sss 0 and
d(s, s 0)Z1 if sZs 0, ensures that only links between
surface sites in different cells contribute to the cells’
adhesion energy. The adhesive interactions operate over
a prescribed range around each lattice site. Figure 4
shows a fourth-nearest-neighbour interaction range. In
two dimensions, each lattice site has four nearest
neighbours. In three dimensions, the number of nearest
neighbours is six.

4.1.6. Cell size and shape fluctuations. A cell of type
t has a prescribed target volume v(s, t) and target
surface area s(s, t) corresponding to the averages for
cell-type t. The actual volume and surface area
fluctuate around these target values, e.g. owing to
changes in osmotic pressure, pseudopodal motion of
cells, etc. Changes also result from growth and division
of cells during morphogenesis. Evolume enforces these
targets by exacting an energy penalty for deviations.
Evolume depends on four model parameters: volume
J. R. Soc. Interface (2005)
elasticity, l, target volume, vtarget(s, t), membrane
elasticity, l0, and target surface area, starget(s, t):

aEvolume ¼
X

all cells

lsðvðs; tÞKvtargetðs; tÞÞ2

þ
X

all cells

l0sðsðs; tÞKstargetðs; tÞÞ2: (4.4)

Changing the ratio of v
2=3
targetðs; tÞ to starget(s, t) changes

the rigidity or floppiness of the cell shape. In our sample
simulations, we drop the surface area term (see table 3,
which lists parameter values) by setting l0s to zero.

4.1.7. Chemotaxis and haptotaxis. In principle, cells can
respond to both diffusible chemical signals and
insoluble ECM molecules by moving along
concentration gradients of these substances. Although
CompuCell3D readily accommodates chemotaxis,
mesenchymal cells in the developing limb seem not to
respond chemotactically to any of the molecules in our
core genetic network. We therefore have not included
chemotaxis in our simulations. Haptotaxis requires
a representation of an evolving, spatially varying
concentration field, and a mechanism linking the field
to the framework for cell and tissue dynamics. The
former depends on the particular ECM molecule
(§§4.2 and 4.3). We denote the local concentration of
the molecules in extracellular space by a scalar field
CðxÞ, where x denotes the location in space. An
effective chemical potential, m(s) models haptotaxis:

Echemical ZmðsÞCðxÞ: (4.5)

4.1.8. Cell growth, cell division and cell death.
Equations (4.3)–(4.5) used the energy formalism of
the CPM to model certain cell behaviours. We also use

the CPM lattice to model cell growth, division and
death. Cell growth and death affect the CPM model
parameters vtarget(s, t) and starget(s, t). We model cell
growth by allowing the values of vtarget(s, t) and
starget(s, t) to increase with time at a constant rate.
Growth properties depend on cell type (§4.4).

We can model programmed cell death (apoptosis)
simply by setting the cell’s target volume to zero. In a
chicken limb (and other examples of non-webbed limbs)
non-condensed cells between the digits die off, freeing
the elements from one another. The spaces between the
zeugopodal elements (radius and ulna, tibia and fibula)
similarly undergo apoptosis. In this paper, since we do
not consider the formation of tissues other than
cartilage, we do not implement rules for cell death.

Cell division occurs when the cell reaches a fixed,
type-dependent volume. We model division by starting
with a cell of average size, vtargetZvtarget,average, causing
it to grow at a constant rate until vtarget increases to
2vtarget,average, and splitting the dividing cell into two
cells, each with a new target volume: vtarget/2. One
daughter cell assumes a new identity (a unique value of
s). A breadth-first search selects the voxels which
receive the new s. The split is along a random,
approximate cell diameter. The breadth-first algorithm
(submodel 5 in table 1), does not require explicit
calculation of diameter: it ensures that the voxels



Table 3. Values of parameters for normal limb simulations.

RD equations with stabilizing cubic terms
domain length 2p
domain width 6p/7
g 100.0 (humerus region), 180.0 (radiusCulna), 1710.0

(digits)
J0 0.04
ka 1.0
ki 1.0
R0 2.0
D 5.0

daxZdix 1.0 in humerus (1 skeletal element) region
1/4 in radiusCulna (2 skeletal elements) region
1/12 in digits (3 skeletal elements) region

dayZdiy 0.15
ba/(gR0) 0.02
bi/(gR0) K0.6
cas 1.32494
cis 0.86545
Dx p/35
Dt 0.000 02

CPM parameters
fluctuation temperature T 1.5
J (non-condensing) 7.0
J (condensing) up to 0.5
volume param., ls 3.0
target volume, vtarget 16 voxels, grows to 32 voxels before mitosis
surface param., ls not used (0)
haptotaxis param., m 50.0
initial cell density w60%

fibronectin parameters
fibronectin production rate 0.15 per time-step
TGF-b threshold 0.15

integration, grid and numerics parameters
domain discretization number of subdivisions in (X, Y, Z )Z(71, 31, 211), corre-

sponds to dorsoventral:antero-posterior:proximo-dis-
talZ2.3 : 1 : 6.8. A rectangular approximation to a
typical limb bud is XZ3.1 mm, YZ1.6 mm, final Z
length after growthZ10.8 mm (1.9 : 1 : 6.8). Same grid
size used for CPM and RD. Approximately 2 65 000
voxels were initialized to cell indices

time-steps 100 RD steps per CPM step, 71!31!211 trials per CPM
step

total time day 4 to day 7 (total of 3 days) covering stages 20–30 of
chick limb growth. Total time-stepsZ300 CPM steps

domain growth growth was uniformly distributed over a total of 300 CPM
steps (the total time entry above)
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belonging to the two daughter cells, respectively, each
form a connected domain of voxels with the same index.
4.2. Modelling molecular scales: reaction–
diffusion equations

Turing (1952) introduced the idea that interactions of
reacting and diffusing chemicals (usually of two species)
could form self-organizing instabilities that provide the
basis for biological spatial patterning (e.g. animal coat
patterning; see Murray 1993; Miura & Maini 2004a for
reviews). A slow-diffusing activator (i.e. a chemical that
has a positive feedback on its own production) and a
fast-diffusing inhibitor can give rise to spatial patterns
of high and low concentrations of activator. The key
point is that the interaction of production and diffusion
can destabilize spatially homogeneous reactant
J. R. Soc. Interface (2005)
concentrations. RD systems develop concentration
patterns via the Turing instability mechanism
(§4.2.2). Several models attempt to account for RD of
morphogenetic signalling during chondrogenesis in the
limb (Newman & Frisch 1979; Hentschel et al. 2004)
and its isolated mesenchymal tissue (Miura & Shiota
2000a,b; Miura et al. 2000; Miura & Maini 2004b). We
use this continuum PDE-RD approach to model
diffusible TGF-b in the limb domain.

Cell-type-specific gene expression programmes cause
cells to respond to threshold levels of TGF-b concen-
tration (see §4.3), forming a spatial pattern that reflects
the established pattern of TGF-b concentration.
TGF-b thus forms the first prepattern, which guides
chondrogenic condensation.

In our RD model, the cells both affect and respond
to the prepattern, rather than simply following it
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(Izaguirre et al. 2004). This feedback affects the
stability of patterns, often helping to lock in (stabilize)
a pattern that would be transient without feedback.
The production of the substrate molecule fibronectin
(described in §4.3), forms the second prepattern for cell
condensation, which provides feedback and stability.

4.2.1. Reaction–diffusion continuum submodels. The
general form for RD equations is

vui
vt

Z
Xn
jZ1

di
j

v2ui
vx2j

CgFiðuÞ; (4.6)

where iZ1, ., M, uZ(u1, ., uM)
T, ui denotes the

concentration of the ith chemical species, FZ
(F1,., FM): R

M/RM is the reaction term and gO0
is an auxiliary parameter. Equation (4.6) applies to an
open, bounded region U2Rn, nR1, with fixed or
moving boundaries. DZfdi

jgiZ1;.;M
jZ1;.;n is an M!n matrix

of diffusion coefficients (with positive entries). We
assume that the chemicals do not penetrate the
boundary of U. That is, the boundary conditions we
use are no-flux: Xn

jZ1

di
j

vui
vnj

Z 0; (4.7a)

where iZ1, ., M, and n̂Zðn1;.;nnÞ is the unit
outward normal to the boundary of U. In the isotropic
case, the boundary conditions in equation (4.7a)
simplify to:

vui
vn̂

Z 0; (4.7b)

The initial conditions are:

uðx; 0ÞZ u initðxÞ: (4.8)

For biological applications of RD see, among others,
Meinhardt (1982), Murray (1993) and Miura & Maini
(2004a). Often, as here, the number M of chemical
species is two. Conventionally, u1 is an activator and u2
an inhibitor. Mathematically, the actions of activator
and inhibitor mean that for a stationary steady state
u0, we have ðvF1=vu1ÞO0 if u1 is an activator and
ðvF2=vu2Þ!0 if u2 is an inhibitor. Commonly, we also
assume that the inhibitor inhibits the activator and the
activator activates the inhibitor (ðvF1=vu2Þ!0 and
ðvF2=vu1ÞO0, respectively), but a bifurcation can also
take place if the inhibitor activates the activator and
the activator inhibits the inhibitor (ðvF1=vu2ÞO0 and
ðvF2=vu1Þ!0).

4.2.2. Turing bifurcation. Consider isotropic diffusion,
when the entries of fdi

jg do not depend on j (we will
later drop this restriction):

vu

vt
ZDV2uCgFðuÞ; (4.9)

where uZ(u1, u2)
T and DZdiagðd1; d2Þ. Without loss

of generality we can assume that

d1 Z 1; d2 Z d: (4.10)

For simplicity, we also assume that U is a cuboid:

UZ ð0; lxÞ!ð0; lyÞ!ð0; lzÞ: (4.11)
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Let u0 be a spatially uniform solution of F(u)Z0
stable to spatially homogeneous perturbations. Then,
(see Grindrod 1991) u0 is also a stable solution of
equation (4.9) if d is small. A Turing bifurcation occurs
when, at the critical value of dZdcrit (for increasing, d,
i.e. an increasing diffusion rate of inhibitor), u0 loses
stability to a spatially varying stationary solution,
generating a pattern (Alber et al. 2005). This pattern
first grows exponentially, but the nonlinear terms in the
reaction kinetics F typically slow down the growth and
eventually lead to a steady-state pattern. The wave-
length of the final pattern need not correspond to the
maximally unstable wavelength of the linearized
equations.

The geometry of the RD domain also helps
determine the pattern. If the domain size and pattern
scale are comparable, the shape and exact size of the
domain have a crucial influence on the pattern.
A central idea in explaining the emergence of different
patterns in the avian limb through Turing-type RD
mechanisms relies on this dependence. Newman &
Frisch (1979) and Hentschel et al. (2004) suggested that
variations in the width of the active zone might produce
the different patterns corresponding to the stylopod,
zeugopod and autopod.

In addition, if the RD domain has certain spatial
symmetries (for example a cube, sphere, or more
generally, a rectangle whose edge ratios are integers),
different types of pattern are possible. In a two-
dimensional rectangle with no flux boundary con-
ditions, these patterns are horizontal or vertical stripes,
or spots. Ermentrout (1991) has shown that stripes and
spots cannot be simultaneously stable in this situation.
Alber et al. (2005) have generalized this result to three
dimensions and higher. Callahan & Knobloch (1996,
2001) have treated the case of periodic boundary
conditions. The nonlinear (quadratic and cubic) terms
in the RD equations determine whether stripes or
spots (or neither) are stable. Changing the nonlinear
terms in F can exchange stability between spots and
stripes.

4.2.3. Application tomodelling theavian limb.Chaturvedi
et al. (2003) and Izaguirre et al. (2004) used an ad hoc
Schnakenberg form (see Murray 1993) for F in
equation (4.9) for their two-dimensional model of
avian limb patterning. The RD equations in this
earlier model acted autonomously, providing a
prepattern to which the cells responded. Here, we
use RD equations based on recent experiments on
chondrogenesis in the early vertebrate limb and
additional hypotheses which Hentschel et al. (2004)
developed in a two-dimensional continuum context
for the densities of different subtypes of mesenchy-
mal cells and the activator-dependent production
rates of activator and inhibitor. Cells produce the
activator and inhibitor, which thus depend on cell
density (Hentschel et al. 2004). This model repro-
duces in a two-dimensional version the periodicity
and stripe patterns of a central longitudinal section
of the real limb.

The RD equations based on Hentschel et al. (2004;
corresponding to equations (4.15) therein), thus



8We have effectively decoupled the RD prepattern (the first
prepattern) from the cell dynamics by setting the cell density R0

constant and equal to the average cell density as a zeroth
approximation to the interface between the CPM-based cell dynamics
and RD-based activator and inhibitor dynamics. Including a further
feedback mechanism from the cell to the RD prepattern, for example
by computing instantaneous local cell density from the CPM, might
obviate the additional third-order terms Ka(ca) and Ki(ci).
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become:

vca
vt

Zg½ðJ0 CJaðcaÞbðcaÞÞR0 Kkacaci

CKaðcaÞR0�C dax
v2ca
vx2

Cday
v2ca
vy2

C
v2ca
vz2

� �
;

vci
vt

Zg½JiðcaÞbðcaÞR0 Kkicaci CKiðciÞR0�

Cd dix
v2ci
vx2

Cdiy
v2ci
vy2

C
v2ci
vz2

� �
:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(4.12)

Here, d represents the diffusion coefficients, and c the
concentrations of diffusing species. The subscript ‘a’
denotes the activator, and subscript ‘i’ the inhibitor.
Subscripts x, y and z denote the spatial variation of the
diffusion coefficients (equivalent to varying the limb
cross-section as we describe below).

R0 is the density of mobile cells in the continuum
model (see Hentschel et al. 2004). Effectively, b(ca)
denotes the fraction of R0 cells that produce the
activator and inhibitor in equations (4.12) through
the mechanism of Ja and Ji. In Hentschel et al. (2004),
b corresponds to subtype R2 of type R0 (R2 cells express
FGF-2 receptor 1). The proportion b(ca) depends on
the TGF-b concentration, ca, owing to simplifications of
more complicated equations (Hentschel et al. 2004).
The crucial assumption which justifies the simplifica-
tions is that the overall mobile cell density changes
slowly compared with the rate of cell differentiation (see
Hentschel et al. 2004 for more details and a biological
discussion of these simplifications). Section 4.4
describes the various cell types, their characteristics,
and their transition rules in more detail, and also
discusses our implementation of R0 and R2 cells.

In equation (4.12), we assume that the overall mobile
cell density R0 is constant, effectively decoupling the
RD dynamics from the cell dynamics and simplifying
computation. In the range of interest of R0, the
production of morphogens depends more on the rate
constants and kinetic coefficients than on the cell
density.

R2 cells secrete TGF-b and inhibitor at activator-
dependent rates Ja(ca) and Ji(ca), respectively. We use
Hill kinetics terms from Murray (1993) for these
production rates (see also Hentschel et al. 2004). The
functional forms are:

JaðqÞZ
8:0q2

6:25Cq2
;

JiðqÞZ
8:6q2

6:25Cq2
;

bðqÞZ 0:745 146q

1:922 48Cq
:

9>>>>>>>>=
>>>>>>>>;

(4.13)

The constant production rate J0 of the activator is
small compared with the term Ja(ca)b(ca).

The cells also produce activator and inhibitor via the
two terms, Ka(ca)R0 and Ki(ci)R0, on the right-hand
J. R. Soc. Interface (2005)
side of equations (4.12):

KaðcaÞ ¼ baðcasKcaÞ3jðca=casÞ;
and

KiðciÞ ¼ biðcisKciÞ3jðci=cisÞ; (4.14)

where subscript ‘s’ denotes stable-state values. Here,
j(q) is a smooth step function with j(q)Z1 for q near 1
and j(q)Z0 for q/1 and for q[1, and ba and bi are
constants. In the absence of experimentally justified
reaction kinetics for the morphogen species, we want to
limit the influence of the cubic terms. The modelling
reason for the form we use for j is that it restricts the
terms Ka(ca)R0 and Ki(ci)R0 to operate only near the
equilibrium concentration. We have introduced extra
terms, which change the nonlinear (cubic) terms in the
Taylor expansion of the reaction kinetics F, to
guarantee that the proximo-distal cross-sections of
the patterns are spot-like rather than stripe-like,
resulting in cylindrical bones8 (see also the discussion
of the importance of nonlinear terms in §4.2.2 and
Ermentrout 1991; Alber et al. 2005). For studies of the
effect of cubic terms on patterning in other physical
models, including Rayleigh–Bénard convection and
superconductivity see Ginzburg & Landau (1950),
Swift & Hohenberg (1977) and Bodenschatz et al.
(2000). For a mathematical analysis of the stability of
patterns in other specific RD systems in three dimen-
sions (for example, the Brusselator and the Lengyel–
Epstein model), see Callahan & Knobloch (1999, 2001).

Owing to the form of the termsKa(ca) andKi(ci), the
terms with rates Ja(ca) and Ji(ca) dominate overall
morphogen production both close to, and far from,
equilibrium. Ka(ca) and Ki(ci) fine-tune the morphogen
production rates to bias the emerging pattern to select
spots rather than stripes in the proximo-distal cross-
section, while the concentrations are still close to
equilibrium.

Pattern periodicity in RD depends on the solution
domain. This dependence is biologically realistic: in
the chicken, the antero-posterior width of the limb
bud remains approximately constant during pattern
formation, as does the dorsoventral width (except near
the tip), but the proximo-distal length of the apical
and active zones vary with time (reviewed in
Hentschel et al. 2004). Changing spatial domains are
numerically problematic. Here, we simplify this
problem by using changing diffusion coefficients
(equations (4.12)), which is equivalent to changing the
aspect ratio of the domain (see Newman & Frisch 1979).
If L is a constant length, then the transformation
x0Zx/L leads to av2=vx 02ZL2v2=vx2, so the diffusion
coefficient transforms as d 0Zd/L2. For example,
doubling one side length (LZ2) is equivalent to dividing
the corresponding diffusion coefficient by 22.



Figure 5. Time-series of the concentration of the diffusible
morphogen TGF-b for equations (4.12) (displayed along
proximo-distal cross-sections) with time increasing along the
distal direction (upwards). This first prepattern of cylindri-
cally elongated parallel elements drives the final cell
condensation through the mediating second prepattern of
non-diffusing fibronectin. p denotes the proximal direction, v
the ventral and a the anterior.
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For a square domain, appropriately scaling the
diffusion coefficients can produce different rectangular
cross-sections in the forearm and digit areas. When
incorporating the prepattern in CPM calculations, we
scale back to physical space (corresponding to the lattice
of the CPM model).

Wehave numerically solved the full three-dimensional
equations (4.12). The stable cylindrical structures
resemble bone elements (see figure 5 and §5). These
structures provide a first template/prepattern, which
couples with the stabilizing feedback mechanisms at the
cell level, to result in chondrogenic patterning (§§4.3 and
4.4). We discretized equations (4.12) using an explicit
finite-difference scheme over rectangular domains.
Space and time discretization relate through standard
stability criteria. Separately, or in combination, the set
of parameters g, the ratio lx/ly and the diffusion
coefficients of the activator and inhibitor equivalently
control the number of cylindrical elements and their
geometries.
4.3. Modelling macromolecular scales:
fibronectin secretion

Fibronectin secretion and assembly in the mesenchy-
mal ECM (Wierzbicka-Patynowski & Schwarzbauer
2003) plays an important role in cell condensation. Our
J. R. Soc. Interface (2005)
earlier two-dimensional simulations assumed that cells
moved over a substratum coated with varying concen-
trations of non-diffusing fibronectin molecules (Cha-
turvedi et al. 2003; Izaguirre et al. 2004). In three
dimensions, we still assume that fibronectin remains at
its secretion location and use a separate grid to track its
concentration. We could also model fibronectin on the
CPM grid by making it into a generalized cell and
adding appropriate CPM parameters like l and J.

In our model, cells respond to the TGF-b chemical
signal by producing fibronectin, and a cell–cell adhesion
molecule (CAM) which we identify with N-cadherin
(Oberlender & Tuan 1994; Tsonis et al. 1994) or
cadherin-11 (Luo et al. 2005). Cells, in turn, bind to
fibronectin and accumulate at points of high fibronectin
concentration in this ECM microenvironment (Frenz
et al. 1989a,b; Zeng et al. 2003). Because cells tend to
cluster at sites of high fibronectin concentration and
deposit additional fibronectin there in proportion to
their density, the trapping effect of fibronectin is self-
enhancing. Furthermore, production of CAM in
response to TGF-b signalling upregulates cell–cell
adhesion, which also enhances the accumulation of
cells.

Thus, although the TGF-b prepattern resulting from
the Turing instability triggers patterning of fibronectin,
self-enhancing, positive feedback, independent of TGF-b
mechanisms, causes subsequent fibronectin deposition
into patterns. Our proposal for a role for the adhesive
substratum (e.g. fibronectin) in stability of the cellular
patterns in our integrated model (see also Kiskowski
et al. 2004) is qualitatively different from other
RD-based approaches in the literature which seek
stability only in the activator–inhibitor system itself.
The fibronectin concentration pattern provides a
prepattern for cell condensation. The model demon-
strates global emergent phenomena resulting from local
interactions.
4.4. Cell types and the state-transition model

During morphogenesis, cells differentiate from initial
multipotent stem cells into the specialized types of the
developed organism. The concept of differentiation
requires some discussion (e.g. Newman & Forgacs
2005). Although every cell differs, identifying cells
with broadly similar behaviours and grouping them as
differentiation types is extremely convenient. Cell
differentiation from one cell type to another is a
comprehensive qualitative change in cell behaviour,
generally irreversible and abrupt (e.g. responding to
new sets of signals, turning on or off whole pathways). It
typically depends on a gene expression programme
generated during prior stages of development. All cells
of a particular differentiation type share a set of
descriptive parameters, while two different cell types
(e.g. myoblasts and erythrocytes) have different para-
meter sets.

Cells of the same type can exist in different states,
corresponding to a specific set of values for the cell-
type’s parameter set. A cell’s behaviour depends on its
state; two simulated cells behave identically in the same
external environment if all parameters associated with
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their cell type are exactly the same, while cells of the
same type with different parameter values can behave
differently. Biologically, cells of the same type in
different states typically differ less in their behaviour
than cells of two different types. A cell’s gene-expression
programme, and the external cues that it encounters,
influence both its type and state.

We model differentiation using a type-change map.
Each type in this map corresponds to a cell type that
exists during limb chondrogenesis. Change of a cell
from one type to another corresponds to cell differen-
tiation. The type-change map models regulatory
networks by defining the rules governing type change,
which account for the intra- and inter-cellular effects of
chemical signals.

In the avian limb, the initial precartilage mesenchymal
cells can translocate, divide and produce various
morphogens and ECM molecules. We assume that
cells in the active zone represent a cell type distinct
from those in the apical zone. Specifically, unlike the
apical-zone cells, active-zone cells respond to activator,
inhibitor and fibronectin. They can also produce
activator and inhibitor, and correspond to the R0 type
in equations (4.12). Since b in equations (4.12)
implicitly accounts for the R2 type, we do not include
R2 cells in the type-change map. When a responsive cell
in the active zone senses a threshold local
concentration of activator (TGF-b), its type changes
to fibronectin-producing. A fibronectin-producing cell
can upregulate its cell–cell adhesion (the parameter
Jt;t0 in the CPM decreases). Cells that have not
experienced local threshold levels of activator can
respond to, but not produce, fibronectin. All cell types
divide.

In total, we use four cell types in the model: apical-
zone mesenchymal, active-zone mesenchymal, fibro-
nectin-producing and quiescent (those in the frozen
zone after the condensation has taken place).
4.5. The scale of the organ: integration of
submodels

The various biological mechanisms must work in a
coordinated fashion. We therefore designed our com-
putational environment to integrate the biological
submodels, while maintaining their modularity, e.g. by:
(i)
J. R.
matching the spatial grid for RD and the CPM;

(ii)
 defining the relative number of iterations for the

RD and CPM evolvers.
9http://public.kitware.com/VTK/get-software.php
The fibronectin and CAM submodels form a positive
feedback loop (of fibronectin secretion and CAM
upregulation) providing the biologically motivated
interface between the RD-based TGF-b prepattern
and the CPM-based cell dynamics. TGF-b, the
threshold concentration of which initiates differen-
tiation (type change), provides the interface between
RD and the type-change map. The type-change map
chooses parameter sets and their values in the CPM
representation.
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4.6. Environment implementation: modular
framework and integration

The front and back ends of the environment are distinct
modules. The back-end consists of two engines that
carry out most calculations—a computational engine,
which combines the various biological submodels, and a
visualization engine for graphics that can run indepen-
dently. The front end to the engines provides a file-
based user-interface for simulation parameters and
visual display. The computational engine has three
main modules: the CPM engine (stochastic, discrete),
the RD engine (continuum PDEs) and the type-change
engine (a rule-based state automaton).

The RD engine uses an explicit solver, based on
forward time marching. We store these calculations as
fields, e.g. the TGF-b, inhibitor and fibronectin
concentrations. The CPM simulator implements the
lattice abstraction and the Monte Carlo procedure.
The acceptance probability function is Metropolis–
Boltzmann. We can view the CPM as an operation on a
field of indices. Various fields can evolve under their
own sets of rules—Metropolis dynamics for the field of
indices, RD for the field of morphogens. A chemical like
fibronectin, which cells secrete and which then remains
in place, is another concentration field, with a reaction
dynamics with no diffusion. A version of this environ-
ment, CompuCell3D, is available for download. (For
the detailed design of the computational algorithms and
environment see Cickovski et al. in press.)

In order to integrate these modules, we specify
criteria for interpolating between the various grids and
the order in which to evolve fields. Other sub-modules
implement different cell responses, e.g. cell growth and
mitosis. We used the Visualization ToolKit (VTK),
available as freeware9 to develop our visualization
software.
5. DISCUSSION OF SIMULATION RESULTS

How do parameters affect the integrated model? We
start with an initial distribution of undifferentiated
cells in the ECM, with a cell volume less than the
average cell volume (table 1), no initial fibronectin and
a small, randomly perturbed, distribution of activator
and inhibitor. We started with all cells as mesenchymal
cells (with no frozen zone initially). We did not track
the number of cells of specific types during the course of
the simulation. The combination of morphogens, cell
dynamics and cell differentiation produces the approxi-
mately periodic pattern of the major chondrogenic
elements in the chick limb. Table 2 lists the important
mechanisms and their corresponding control para-
meters to emphasize that, although the integrated
model has a large number of parameters, only a few
specific parameters control each mechanism.

We first present a parameter set for normal
patterning of chick forelimb precartilage condensation:
one followed by two and then three primary parallel
skeletal elements successively in the distal direction.
Figure 5 shows a time-series (in the growing distal

http://public.kitware.com/VTK/get-software.php
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Figure 6. Fibronectin production corresponding to normal
chondrogenesis. We show fibronectin accumulation along the
distal direction, as time progresses and the limb grows.
Haptotaxis of cells in response to fibronectin (the second
prepattern) and cells continuing fibronectin secretion make
the pattern robust and does not require a persistent activator
(first) prepattern. The fibronectin pattern establishes itself
faster (a) 400 Monte Carlo steps (half-formed limb); (b) 800
Monte Carlo steps (fully formed limb) than the final cell
condensations (1040 Monte Carlo steps; figure 7), emphasiz-
ing fibronectin’s role in pattern consolidation. Fibronectin
accumulates at its secretion location: its concentration in the
humerus region in (b) is larger than in (a).

Figure 7. Cell condensation into humerus, ulna and radius,
and digits after 1040 Monte Carlo steps. Visualization using
volume rendering. The axes correspond to the p, a and v of
figure 5.

Figure 8. Time-series (successive transverse cross-sections in
the distal direction, which is upward in the figure) of TGF-b
concentration in a growing limb bud, corresponding to the
pathology of extra digits (four digits form instead of three; see
figure 9).
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direction) for the activator concentration as the first
prepattern forms. Cells exposed to an above-threshold
activator concentration begin and continue to secrete
fibronectin. In response to fibronectin, cells undergo
haptotaxis and become more adhesive to each other so
the fibronectin concentration (the second prepattern)
and cell-condensation (skeletal element) pattern follow
the activator prepattern.

Fibronectin produces a positive feedback loop that
stabilizes cell condensations. Figure 6 shows the
distribution of fibronectin in the limb at different
times. The fibronectin pattern forms relatively quickly
(approximately 20 times faster than the final cell
condensations, see figure 6 and its caption). Figure 7
shows10 simulations of the full three-dimensional chick-
limb chondrogenesis model, where the cells have con-
densed into the chondrogenic pattern of a chick forelimb.
Table 3 gives the complete set of parameter values for
these simulations. Most of these parameters are
analytically and numerically determined. Order-of-
magnitude estimates exist in the literature for relevant
quantities, such as the morphogen diffusion coefficients
given in Lander et al. (2002). The range of parameter
values studied should encourage more quantitative
10Note on visualization: shading of the cell condensations in figures 7
and 9 is due to the rendering algorithm (the VTK library’s (footnote 9)
volume rendering was used (see the legend of figure 7)). The algorithm
does not render each cell of the condensation, which would be
impractical in three dimensions. Spatial scales in all figures are
uniform.Cells throughout the limb domain all have approximately the
same volume in the figures.
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experiments. Parameters specific to the RD part of the
model with cubic terms correspond to equations (4.12).

We next studied parameter sets resulting in two
cases of abnormal development.

Figure 8 shows a case where four rather than three
digits formed, corresponding to polydactyly. All
parameters are the same as for normal development
(table 3), except that the transition of daxZdix to the
value of 1/12 occurs later than normal, e.g. owing to
abnormal FGF signalling and/or late response of the
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Figure 9. (a) Fibronectin distribution and (b) cell conden-
sation, after 940 Monte Carlo steps, corresponding to the
TGF-b (first) prepattern in figure 8.

��� ���

Figure 10. (a) Time-series (successive transverse cross-
sections in the distal direction) of the TGF-b concentration
in a growing limb bud, corresponding to the pathology of
Apert’s syndrome. (b) The fibronectin concentration field
after 500 Monte Carlo steps (limb not fully formed). The
radius and ulna fuse and digits fail to form.
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cells secreting morphogens at the proximal boundary of
the apical zone. Figure 9a displays the fibronectin
distribution and figure 9b the resulting cell conden-
sations. Experimentally, late, localized removal of the
AER, amajor source of the limb’s FGF (and the only one
in our model), induces ectopic digits in interdigital
mesenchyme (see Hurle & Gañan 1987).

Figure 10 shows a case of fused skeletal elements,
corresponding in certain respects to the pathology of
the human genetic condition known as Apert’s
syndrome described in Cohen & Kreiborg (1995).
Figure 10a shows the TGF-b prepattern along the
distally growing limb bud. In the proximal region, the
one-cylinder pattern (one spot in transverse section) is
stable, followed by a bifurcation of the solution into two
cylindrical elements (two spots in cross-section). The
two elements then fuse into one long stripe in the
J. R. Soc. Interface (2005)
transverse section. Figure 10b displays the corresponding
fibronectin pattern. We obtained this pathology
by setting daxZdixZ1/14 in the digits (the three-
skeletal-element region) instead of 1/12 (see table 3),
and having the transitions in dax and dix occur later than
normal, e.g. owing to an abnormal limb-cross-section
aspect ratio or abnormal FGF signalling. Significantly,
Apert’s syndrome results from aberrant FGF signal
transduction owing to an abnormal FGF receptor
(Wilkie et al. 1995).

The two pathological cases suggest that domain-size
changes in the apical and active zones, which we
implemented a priori, affect the location and periodicity
of skeletal element condensations. A more complete
model, which we are currently developing, would
employ the FGF signalling from the AER to control
the evolution of the apical and active zones, Hox and
Gli3 transcription factor gradients to control limb
shape, and gradients of morphogens such as Sonic
hedgehog and Wnt-7A to control antero-posterior and
dorso-ventral patterning (reviewed in Tickle 2003).

We acknowledge support from NSF Grants IBN-0083653,
IBN-0344647 and ACI-0135195, NASA Grant NAG 2-1619,
the IUB Pervasive Technologies Laboratories and an IBM
Innovation Institute Award.
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