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We describe a ‘reactor–diffusion’ mechanism for precartilage condensation based on recent experiments
on chondrogenesis in the early vertebrate limb and additional hypotheses. Cellular differentiation of mes-
enchymal cells into subtypes with different fibroblast growth factor (FGF) receptors occurs in the presence
of spatio-temporal variations of FGFs and transforming growth factor-betas (TGF-βs). One class of differ-
entiated cells produces elevated quantities of the extracellular matrix protein fibronectin, which initiates
adhesion-mediated preskeletal mesenchymal condensation. The same class of cells also produces an FGF-
dependent laterally acting inhibitor that keeps condensations from expanding beyond a critical size. We
show that this ‘reactor–diffusion’ mechanism leads naturally to patterning consistent with skeletal form,
and describe simulations of spatio-temporal distribution of these differentiated cell types and the TGF-β
and inhibitor concentrations in the developing limb bud.
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1. INTRODUCTION

Much recent evidence suggests that the early stages of
skeletal pattern formation in the developing vertebrate
limb depend on complex dynamics, involving several
growth factors and differentiation of cells with receptors
that allow response to these factors. These interactions
produce tissue domains enriched in the extracellular
matrix (ECM) glycoprotein fibronectin, within which the
cells accumulate by cell–matrix adhesive interactions
(Frenz et al. 1989a,b; Downie & Newman 1994, 1995; see
also reviews by Newman & Tomasek (1996) and Hall &
Miyake (2000)). Recent in vitro work by Miura and
coworkers (Miura & Shiota 2000a,b; Miura et al. 2000)
suggests that the polypeptide growth and differentiation
factor, transforming growth factor-beta (TGF-β) TGF-
β2, acts as an ‘activator’ molecule in a pattern-forming
mechanism reminiscent of that proposed by Turing
(1952)1. Because TGF-β also induces the production of
both fibronectin (Leonard et al. 1991) and the cell-
surface-adhesion protein N-cadherin (Tsonis et al. 1994)
in limb bud mesenchyme, local elevated concentrations
can establish fibronectin-rich domains and cause the cells
within these domains to sort out from surrounding mesen-
chyme. The accumulation of cells at sites of elevated
fibronectin deposition followed by direct cell–cell
adhesion is called mesenchymal condensation (Hall &
Miyake 2000). In the developing limb, cartilage differen-
tiation, or chondrogenesis, follows such condensation. In
tetrapod species with bony skeletons, bone later replaces
cartilage.
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Moftah et al. (2002) have recently shown that sites of
incipient condensation exert a laterally acting inhibitory
effect on chondrogenesis in vitro and in vivo upon
exposure to the ectodermally produced fibroblast growth
factors (FGFs), FGF2 and FGF8. Only cells expressing
FGF receptor 2 (FGFR2) produce this inhibitor (Moftah
et al. 2002), and FGFR2 is expressed only at sites of con-
densation in vitro and in vivo (Peters et al. 1992; Szebenyi
et al. 1995; Moftah et al. 2002). The molecular identity
of the inhibitor is unknown2. Together, positively auto-
regulatory (Van Obberghen-Schilling et al. 1988; Miura &
Shiota 2000b), diffusible TGF-β and this laterally acting
inhibitor constitute a minimal pattern-forming mechanism
which may, in principle, generate the basic vertebrate limb
plan (Newman & Frisch 1979; Newman et al. 1988; New-
man 1996; Kiskowski et al. 2004).

This paper develops a set of equations describing the
basic features of this biological model of limb develop-
ment. The equations embody dynamics for establishing
the relevant tissue domains for growth and pattern forma-
tion, as well as reaction–diffusion-like equations capable of
generating roughly stripe-like patterns of cell condensation
like those in the developing limb (see figure 1b,c). In most
cases, the dynamics derive from experimentally estab-
lished interactions between cells and gene products. We
will note when our hypotheses go beyond the evidence.

2. MESOBLAST AND ECTODERM

The mesenchymal tissue of the early limb bud, which
gives rise to the skeleton and muscles, forms a paddle-
shaped mesoblast surrounded by a layer of simple epi-
thelium, the ectoderm. The mitotic index of the differen-
tiating mesoblast during the critical stages of pattern
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Figure 1. (a) A sketch of the embryonic limb bud showing the major developmental axes, the apical zone (light grey),
precartilage condensations (medium grey) and cartilage (black). The stage shown is approximately midway through the course
of skeletal pattern development. (b) A schematic representation of the biochemical circuitry underlying the pattern forming
instability described in this paper. Positive autoregulation of TGF-β, induction of fibronectin by TGF-β, promotion of
precartilage condensation by fibronectin, and expression of a lateral inhibitor of chondrogenesis from sites of condensation by
action of FGFs (not shown) are all supported by experimental evidence. Direct induction of the inhibitor by TGF-β is a
hypothesis. The molecular identity of the inhibitor is unknown as is the factor it inhibits. We assume in this paper that it acts
directly on TGF-β. (c) Progress of chondrogenesis in the chick wing bud between 4 and 7 days of development, shown in
cross-section. The stipple represents precartilage; the solid black represents definitive cartilage. Adapted, with changes, from
Newman & Frisch (1979). (d ) Sketch of the model that was used in the simulation scheme to produce figure 2.

formation is essentially uniform along its proximodistal
axis before stage 25 (Lewis 1975). The interaction of the
distalmost region of the mesoblast (the apical zone) with
the apical ectodermal ridge (AER), a narrow band of spec-
ialized ectodermal cells located asymmetrically at the tip of
the growing limb bud in birds and mammals is, however,
essential to proximodistal development of the chick limb
bud. The AER keeps the apical-zone mesenchyme in a
labile, non-condensed state (Kosher et al. 1979) and its
removal leads to terminal truncations of the skeleton
(Saunders 1948). The entire ectoderm produces FGFs
(Martin 1998), but the AER produces a different mix of
FGFs from the rest of the limb ectoderm which appears
to give it its special role (Niswander et al. 1993; Fallon et
al. 1994).

The apical zone is the only region of the mesoblast with
cells that express FGF receptor 1 (FGFR1) (Peters et al.
1992; Szebenyi et al. 1995). This paper refers to mes-
enchymal cells that express FGFR1 as R1 cells. A zone
of cell condensation arises proximal to the apical zone,
beginning ca. 0.3 mm proximal to the AER (see figure
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1a,c). In this zone FGFR1 is downregulated and cells that
express FGFR2 appear at the sites of incipient conden-
sation (Peters et al. 1992; Szebenyi et al. 1995; Moftah et
al. 2002). We call such FGFR2-expressing cells R2 cells.
To model the establishment of condensations we assume
that the AER releases an FGF with concentration c, which
diffuses in the growing limb with an effective diffusion
constant D, and decays at a rate k, in the ECM:

∂c/∂t = D�2c � kc � J (x, t), (2.1)

where J(x, t) represents the flux of FGF. We assume that
a boundary flux which equilibrates on a fast time-scale
compared with the time-scale for growth, can substitute
for the AER. Thus equation (2.1) simplifies to:

�2c = �2c, (2.2)

with �2 = k/D and ∇→ c = ( J /D)n̂ on the AER boundary. On
the anterior and posterior limb-domain boundaries, zero
flux boundary conditions are assumed. As release of FGFs
can, however, also occur from the dorsal and ventral
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ectoderm, solving equation (2.2) is numerically challeng-
ing if the limb has a complicated shape and the sources
of FGFs are distributed asymmetrically on the AER
boundary. Equation (2.2) does, however, clearly identify
two zones, an apical zone of size lapical � 1/� in which dif-
ferentiation and consequently condensation is suppressed,
and an active zone below the apical zone (see figure 1d)
in which differentiation and condensation can occur.
Newman and coworkers (Newman & Frisch 1979;
Newman et al. 1988) suggested that the size and shape
of this active zone control the number of parallel skeletal
primordia. Our simulations based on the present model
(see figures 2 and 3, below) suggest that this hypothesis,
which is an example of the broader analysis of pattern for-
mation in domains of changing size (Crampin et al.
2002a,b), is biologically plausible, although we have found
that other factors, such as the manner in which the active
zone grows or shrinks with time, and initial conditions,
can strongly influence final pattern selection.

3. PATTERN FORMING INSTABILITIES

The formation of chondrogenic elements in vitro and
in vivo appears to require the interplay between postively
autoregulatory and laterally acting inhibitory diffusible
factors, resulting in a pattern-forming instability. Here, we
present a plausible, but non-unique, set of equations that
incorporates this known biology.

We describe the spatio-temporal evolution of the con-
centration of TGF-β, ca(x, t), as:

∂ca/∂t = J 1
aR1 � Ja(ca)R2 � Da �2ca � kacica. (3.1)

In equation (3.1) we assume that R1 cells release TGF-β
at a low constant rate J1

a and that R2 cells release TGF-β
at a rate Ja(ca), corresponding to its upregulation of pro-
duction in the presence of the local TGF-β concentration,
ca. In the absence of more specific evidence, we assume a
Michaelis–Menten form for the TGF-β activator dynamics:

Ja(ca) = Ja,max(ca/c∗
a )n/[1 � (ca/c∗

a)n], (3.2)

where we can select either linear n = 1 or quadratic n = 2
sigmoidal activation, with a maximum flux Ja,max, saturat-
ing at concentrations ca � c∗

a . Once produced, TGF-β can
then diffuse in the extracellular medium, where Da is its
diffusion constant. The term kacica assumes that the inhibi-
tor binds to the TGF-β forming a non-reactive complex.
Such kinetics have been observed for other inhibitors of
TGF-β superfamily members (Canalis et al. 2003).

The spatio-temporal dynamics of the associated inhibi-
tor concentration ci(x, t) is then:

∂ci/∂t = Di�
2ci � kacica � Ji(c, ca) R2, (3.3)

where Di is the diffusion constant for the inhibitor. We
make the simple assumption that inhibitor is removed by
the same interaction that sequesters the activator. In a study
of the interaction of BMP4 (a member of the TGF-β
superfamily) with one its known inhibitors, Noggin, which
serves as a prototype for the hypothesized TGF-β-inhibi-
tor interaction here, BMP4 upregulated noggin mRNA,
but once BMP4 was inactivated by Noggin, noggin gene
expression was completely suppressed (Sela-Donenfeld &
Kalcheim 2002).
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We assume that the inhibitor is released by cells
expressing FGFR2, and consequently the production of
inhibitor is proportional to the local density of R2 cells
(Moftah et al. 2002). We have also assumed that the rate
at which the inhibitor is released by an R2 cell is upregul-
ated by both the local FGF concentration and the local
concentration of TGF-β. Typically we will assume a
hyperbolic dependence for each:

Ji(c, ca) = Ji,max (c/csat)l/[1 � (c/csat)l ](ca/ca,sat)m/
[1 � (ca/ca,sat)m]. (3.4)

The dependence on the FGF concentration comes from
experiments (Moftah et al. 2002), which suggest that
FGFR2 cells only express inhibitor in the presence of
FGFs. In our in vivo simulations we take the FGF concen-
tration to be high close to the AER (defining the apical
zone) and to have a lower value in the active zone (see
below and figure 1d). We assume a hyperbolic form for
the dependence of inhibitor production on TGF-β.
According to linear stability analysis of the system with
the minimal set of assumptions used here, pattern-forming
instabilities only occur with such a nonlinear dependence
on the activator (see electronic Appendix B). Once an
inhibitor molecule is unambiguously identified, therefore,
its kinetic dependence on TGF-β can serve as a test of
this model.

4. CELL DIFFERENTIATION

Four main types of mesenchymal cell are involved in
chick limb skeletal pattern formation: R1(x, t) denotes the
spatially varying density of cells that express FGFR1;
R2(x, t) denotes the spatially varying density of cells that
express FGFR2; R�2(x, t) denotes the spatially varying
density of cells deriving from R2(x, t) which secrete higher
levels of fibronectin and display N-cadherin on their sur-
faces (Oberlender & Tuan 1994); and R3(x, t) denotes the
spatially varying immobile FGF receptor 3-expressing
(Szebenyi et al. 1995; Ornitz & Marie 2002) cartilage cells.
The total density of mobile cells at any spatial point x
is thus:

R(x, t) = R1(x, t) � R2(x, t) � R�2(x, t). (4.1)

We assume that all mobile cells divide at the same rate.
This simplification is in reasonable agreement with the
known biology (Lewis 1975). Therefore we shall assume
that each mobile differentiated cell type, Ri divides accord-
ing to the logistic form:

r Ri(Req � R). (4.2)

Note that the form chosen implies that an equilibrium
density of all mobile cells Req is stable in the absence of
mesenchymal condensation. Such a stable equilibrium
would occur from a suppression of cell division at high cell
densities, R � Req, and apoptosis. Describing the spatio-
temporal behaviour of these cell types and the differen-
tiation of one type into another requires four coupled par-
tial differential equations.

(a) Dynamics of cells expressing fibroblast growth
factor receptor 1

The dynamics for R1 includes diffusion, haptotaxis,
mitosis and differentiation into R2 cells which we write:
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∂R1/∂t = Dcell�
2R1 � � ∇→ ·[R1 ∇→ �] � r R1(Req � R)

� k21R2 � k12(c, ca)R1. (4.3)

Here, Dcell�
2R1 represents cellular diffusion. The term

�� ∇→ ·[R1 ∇→ �] describes condensation as a result of hapto-
taxis as the cell flux migrates up the fibronectin concen-
tration gradient, where � is the fibronectin concentration.
The rate of cell division has a logistic form as described
above in equation (4.2), where experimentally the rate of
doubling is �1/(rReq) ca. 13 h (Lewis 1975). The rate of
differentiation k12(c, ca) of R1 cells into R2 cells depends
both on the concentrations of FGFs and the activator
TGF-β. We assume the rate decreases as the FGF concen-
tration c increases, ∂k12(c, ca)/∂c 	 0 and increases as the
activator concentration ca increases, ∂k12(c, ca)/∂ca � 0. A
reasonable rate expression consistent with these obser-
vations would have a Michaelis–Menten sigmoidal form

k12(c, ca) = k12,max(ca/c∗∗
a )q/{[1 � (c/c∗∗) p][1 � (ca/c∗∗

a )q]},
(4.4)

saturating to a maximum value k12,max at low FGF concen-
trations c � c∗∗ and high TFG-β concentrations c � c∗∗.
The rate of differentiation, moreover, decreases in the
presence of high concentrations of FGF and becomes very
small when c � c∗∗, as will occur as in the ‘apical zone’
beneath the AER. The exponents p and q depend on the
kinetics of this differentiation. We take the time-scale for
R1 cells to differentiate into R2 cells in the absence of inhi-
bition to be 1/k12,max or �5 h, although there is no direct
experimental measurement of this rate. We also make the
assumption that the reverse process is significantly slower:
1/k21 � 36–48 h.

(b) Dynamics of cells expressing fibroblast growth
factor receptor 2

The dynamics for R2 cells which release the inhibitor of
TFG-β (see equation (3.3) for the inhibitor kinetics) is
taken to be:

∂R2/∂t = Dcell�
2R2 � � ∇→ ·[R2 ∇→ �] � rR2(Req � R)

� k12(c, ca)R1 � k21R2 � k22R2. (4.5)

In addition to diffusing, moving up adhesion gradients by
haptotaxis and undergoing cell division, the R2 cells can
differentiate back into R1 cells and also into R�2 cells. The
time-scale for the R2 cells to differentiate into R�2 cells is
1/k22 � 12 h (Moftah et al. 2002). We assume this differ-
entiation is irreversible.

(c) Dynamics of cells expressing fibronectin
The dynamics of R�2 cells are crucial to chondrogenesis

because these cells produce elevated levels of fibronectin
(see equation (5.1)) and have greater cell–cell adhesivity,
both of which promote precartilage condensation. We
write:

∂R�2/∂t = Dcell�
2R�2 � � ∇→ ·[R�2 ∇→ �] � r R�2(Req � R)

� k22R2 � k23R�2. (4.6)

Again diffusion, haptotaxis and cell division can occur. In
addition, the R�2 cells can differentiate into immobile R3

cells, where the last term represents this differentiation
which we estimate to have a characteristic time-scale of
1/k23 � 18 h.
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In the absence of contrary experimental data, we have
taken the diffusion constants Dcell and the response of the
cells to the fibronectin gradients, �, to be identical in
equations (4.3), (4.5) and (4.6). We have also assumed
that the haptotactic flux of cells is linear in the fibronec-
tin gradient.

(d) Dynamics of cells expressing fibroblast growth
factor receptor 3

Finally the R3 dynamics are assumed to be very simple:

∂R3/∂t = k23R�2 � r3R3(R3,eq � R3). (4.7)

In equation (4.7) we assume that the R�2 cells can differen-
tiate irreversibly into immobile R3 cartilage cells at a rate
k23. We allow these immobile cells to continue to divide,
but in general we expect that mitosis will occur at a differ-
ent rate, r3, from the rate r, for mobile cells; and we also
expect that the equilibrium density of cartilage cells R3,eq

will, in general, differ from that for the mobile cell den-
sity Req.

5. FIBRONECTIN AND MESENCHYMAL
CONDENSATION

Haptotaxis, the movement of cells up extracellular
adhesion gradients, and direct cell–cell adhesion, drive
precartilage mesenchymal condensation (Newman &
Tomasek 1996; Hall & Miyake 2000). Haptotaxis requires
the deposition of adhesive ECM molecules, in particular
fibronectin, in a spatio-temporal pattern (Tomasek et al.
1982; Frenz et al. 1989b; Leonard et al. 1991; Downie &
Newman 1994, 1995). Fibronectin molecules create
adhesive patches which can trap cells diffusing through
the ECM (Frenz et al. 1989a). As the residence time of
any randomly translocating cell in a volume of tissue will
increase in proportion to the concentration of fibronectin
in its immediate microenvironment (Zeng et al. 2003), the
net result is a flow of cells up adhesive gradients which
initiates condensation. Because all cell types can release
small amounts of fibronectin, but in the presence of TGF-
β R�2 cells release more fibronectin (Leonard et al. 1991;
Downie & Newman 1995), we take the fibronectin density
� to obey the kinetic equation:

∂�/∂t = kb(R1 � R2) � k�bR�2 � kc�, (5.1)

with k�b � kb. In equation (5.1) the fibronectin does not
itself diffuse but remains localized in the ECM where it
was deposited.

6. A ‘BARE BONES’ MECHANISM FOR SKELETAL
DEVELOPMENT

The known biology, therefore, leads naturally to eight
coupled nonlinear partial differential equations: for the
FGF concentration c, four cell types R1, R2, R�2, R3, the
TGF-β concentration which acts as an activator ca, an
inhibitor ci and the fibronectin density in the ECM �. This
‘reactor–diffusion’ system3 is extremely complex. Under
certain biologically reasonable assumptions, however, we
can employ two powerful mathematical tools: separation
of time-scales and gradient expansions (see electronic
Appendix A). These biological assumptions are: first, that
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the overall mobile cell density R = R1 � R2 � R�2 changes
on a time-scale that is slow compared with cell differen-
tiation; and second, that the pattern gradients are small.

What biological evidence do we possess that the time-
scale for differentiation is faster than that for changes in
the overall cell density? In lung, it has been shown that
fibroblasts’ TGF-β exposure substantially increased their
production of FGFR2 protein within 30 min of adminis-
tration, in a dose-dependent fashion (Thannickal et al.
1998). By contrast, the period of time between
Hamburger–Hamilton stages 24 and 29 (Hamburger &
Hamilton 1951), during which the digits of the chicken
wing bud first emerge and elongate to an extent of ca.
0.5 mm, is ca. 50 h. Thus the elements elongate at a rate
of �0.5 mm in 50 h. Because the diameter of a single cell
is ca. 15 µm, and significant change in the limb pattern is
detectable only when 30–40 additional cells condense at
the tip of the digit primordium, it is reasonable to assume
that FGFR kinetics is faster than overall cell density kin-
etics. It is also important to understand what cellular time-
scales we are comparing here. We are not comparing the
time-scale for differentiation to the time-scale for individ-
ual cells to move; clearly this later time-scale is faster than
the time-scale for differentiation. Rather, what we assume
to be slow is the time-scale for the overall macroscopic
mobile cellular density to change significantly.

We also assume that the pattern gradients are not too
steep. More explicitly, the assumption is made that the
gradient terms are small compared with the kinetic terms.
This approximation is expected to be valid except in
regions of steep spatial gradients such as occur near the
edges of skeletal elements. It is, however, precisely in these
regions that small-scale phenomena such as cellular
adhesion will dominate the biology, and continuum
approaches are expected to break down in any event. Thus
in the regime in which the continuum description is valid
we would expect the gradients to be shallow. The eight
equations are thereby reduced to four, which capture the
basic features of the spatio-temporal regulation of chond-
rogenesis:

�2c = �2c,
∂ca/∂t = [ J 1

a
(c, ca) � Ja(ca)�(c, ca)]R � Da�
2ca � kacica,

∂ci/∂t = Di�
2ci � kacica � Ji(c, ca)�(c, ca)R,

∂R/∂t = [Dcell � (� � �2(c, ca))R]�2R � �2∂/∂caR2�2ca

� �2∂/∂cR2�2c � r R(Req � R) � k23(c, ca)R.
(6.1)

All symbols previously defined retain their original mean-
ings, whereas the new terms 
(c, ca), �(c, ca), (c, ca) rep-
resent the fraction of each differentiated cell type in the
overall mobile cell density: thus R1 = 
(c, ca)R,
R2 = �(c, ca)R and R�2 = (c, ca)R. These expressions are
known functions of the FGF and TGF-β concentrations
(see electronic Appendix A). The variables ca, ci and R are
all subject to no-flux conditions at the limb boundary.

Certain key features of the dynamics can now be ident-
ified. First, the FGF concentration is equilibrated but its
distribution strongly depends on the source flux distri-
bution. Second, the idea of a template pattern set up inde-
pendently by the activator and inhibitor that then controls
the mobile cell dynamics also appears as one limiting
dynamic of equation (6.1). Such patterning will happen
provided the mobile-cell density variations are not too
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large, in which case we can replace R � Req in the
activator–inhibitor dynamics. The cells respond to gradi-
ents in FGF, gradients in TGF-β and gradients in the cell
density R, leading to fluxes in each case
jtotal = jR � jca � jc. Let us consider each of these gradients
in greater detail (in this discussion we shall neglect quad-
ratic terms in the gradient compared with linear terms,
assuming the gradients to be small). The gradients in the
cell density lead to a flux jR = �[Dcell � (� �
�2(c, ca))R] � R. Its direction is determined by the rela-
tive size of cell diffusion compared with haptotaxis.
Assuming for the moment that haptotaxis is weak, the flux
will be directed down the cell density gradient. Then there
is a flux of mobile cells j ca = �2∂/∂caR2�ca dependent on
gradients of TGF-β in equation (6.1). As ∂/∂ca � 0, this
flux is up gradients of TGF-β and mediated by fibronectin
through �2. Finally there is a flux j c = �2∂/∂cR2�c also
mediated by fibronectin down the gradients of FGF, since
∂/∂c 	 0.

We now show below and in electronic Appendix B,
that not only is equation (6.1) sufficient to represent a
‘bare bones’ mechanism for limb skeletal development,
in that it incorporates a core set of cellular-biochemical
processes known to occur in limb bud mesenchyme, but
that simulations in an evolving active zone can, under the
appropriate geometical constraints, give rise to a realisti-
cally patterned limb skeleton. One interesting result from
the linear stability analysis in electronic Appendix B is
that while the activator–inhibitor dynamics alone are
capable of producing patterns, the inclusion of the cell
density facilitates this pattern-formation in the following
sense: a pattern always develops at a faster rate in the
three-variable system (activator–inhibitor–cells) than it
does in the activator–inhibitor system alone; the effect is
ultimately a result of the flux jca. Moreover, in certain
cases, patterns that cannot form in the activator–inhibitor
system alone (i.e. for which the homogenous state
remains stable), can, however, emerge in the full system.
The inverse, i.e. that a pattern grows in the activator–
inhibitor dynamics system alone, but not in the full sys-
tem, cannot occur.

7. VARIATIONS OF THE ACTIVE ZONE DURING
CELL CONDENSATION

The real shape and growth of a developing limb bud
is extremely complex. Not only are the overall external
dimensions changing with time, but the interior active
zone in which any reactor-diffusion occurs will also be
changing as a result of the formation of cartilage and bone
proximally, and changes in the dimensions of the apical
zone distally. To understand the major consequences of
such limb bud growth and form on skeletal development,
we will make the following geometric approximations: we
treat the limb bud as a parallelpiped of proximodistal
dimension L(t) (the time dependence is a result of
growth), fixed anteroposterior dimensions �y and dorso-
ventral dimension �z. The proximodistal length L(t) will
be taken to consist of three regions. An ‘apical zone’ of
undifferentiated R1 cells at the distal tip of the limb bud,
of size �apical(t); followed by an interior ‘active zone’ of
length �x(t), which consists of differentiated and
condensing cell types; and proximally a ‘frozen
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zone’ of cartilage cells, of length �frozen(t), obeying
L(t) = �apical(t) � �x(t) � �frozen(t) (see figure 1d).

The segmentation of the distal interior domain into an
apical zone and an active zone is an approximation which
will be valid, provided the distribution of FGFs described
by the first equation in (6.1) separates a high FGF concen-
tration under the AER from a low concentration proxi-
mally. We use this ‘active zone model’ as the geometric
basis for a linear stability analysis (see electronic Appendix
B) and our simulations described below.

The reactor–diffusion dynamics take place in the active
zone. The dorsoventral dimension �z, is typically much
smaller than the other length scales, and variations in this
dimension will be neglected here, though naturally they
will need to be considered if fine structure in the dorso-
ventral direction is to be studied. If we accept the
geometry described above, then the length �x(t) of the
active zone in which the differentiated cells, activator and
inhibitor interact by the mechanism proposed in equation
(6.1) can be expected to have a significant impact on the
resulting prepattern created in the limb (Newman &
Frisch 1979; Newman et al. 1988). The reason why such
variations in length result in changes of skeletal patterning,
is that the number of standing waves of a heterogeneous
distribution of a chemical species formed by a reaction–
diffusion mechanism depends both on the scale of the
basic pattern set by the magnitude of the biological para-
meters, and on the space available for this pattern to
develop, which is set by the domain size (Newman and
Frisch 1979; Crampin et al. 2002a,b).

One way in which the size �x(t) of the active zone can
be controlled is through the changes in the apical zone,
since �x(t) = L(t) � �apical(t) � �frozen(t). As cells are
recruited proximally into the frozen zone �frozen(t) and the
proximodistal length of the apical zone �apical(t) decreases
as a result of reduced FGF secretion by the AER, the
proximodistal length of the active zone �x(t), will vary. As
in an earlier model (Newman & Frisch 1979), we shall
assume that this length generally decreases with time and
acts as a control parameter for the selection of spatial
modes. It should be borne in mind, however, that the
details of active zone dynamics needs further biological
study, and that the coarse-grained description we present
here cannot account for the fine details of skeletal struc-
ture. It is clear that other gene products (Hox family,
Wnts, Sonic hedgehog) and localized sources such as the
zone of polarizing activity (ZPA) are essential in sculpting
the limb bud shape and determining the finer features of
skeletal structure (reviewed in Tickle 2003). A model for
the shaping of the limb during its outgrowth that incorpor-
ates the effects of some of these factors has been presented
by Dillon & Othmer (1999).

8. SIMULATIONS OF CHONDROGENESIS

How does this changing active zone length control the
prepattern underlying chondrogenesis? A preliminary
answer can be found using linear stability analysis (see
electronic Appendix B) which shows that in the active
zone, prepatterning can develop provided biological para-
meters are suitably chosen. Then the basic structure of the
skeletal elements turns out to result from bifurcations in
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this prepattern, which result from dynamic variations in
the proximodistal length of the active zone.

Using this active-zone model, we computed solutions
to equation (6.1) in a moving rectangular domain (the
reduction from a parallelepiped to rectangle is achieved by
assuming that all variables are constant in the dorsoventral
direction). Inside the active domain, the FGF concen-
tration c is assumed to be a non-zero constant. When a
site (x, y) leaves the active zone, the concentrations
ca(x, y), ci(x, y) and R(x, y) are ‘frozen’ in the prevailing
pattern. This freezing produces the results shown in
figure 2.

After the frozen pattern has been selected, further
growth in the proximodistal direction is still allowed to
occur in the frozen zone. In figure 3 we show typical
examples of our simulations including such growth at a
constant rate. The skeletal-like patterning is very striking,
though naturally a great degree of variability can appear
depending on both the choice of biological parameters and
the choice of the active zone size. These factors can, of
course, be found only from biology, as their values have
been shaped by evolution.

To perform these simulations, we first rewrite equation
(6.1) (apart from the equation for the FGF distribution
which we have argued gives rise to the apical zone and
active zone) in dimensionless form. We will use the con-
stant anteroposterior scale �y, as our unit of length and
the TGF-β diffusion time-scale �2

y/Da, as our unit of time.
Then we introduce new dimensionless variables:

x̃ = x/�y, t̃ = t·Da/�2
y, u(t̃, x̃) = ca(t, x)/c∗,

v(t̃, x̃) = ci(t, x)/c∗, R(t̃, x̃) = R(t, x)/Req, (8.1)

where c∗ is any suitable concentration scale, and we
choose the equilibrium cell density, Req, to scale the cell
density variations. For the numerical simulations, we con-
sidered the following system of scaled nonlinear partial
differential equations (see electronic Appendix B):

∂u
∂t

= g[( J̃ a(u)�(u) � J̃ 1
a
(ueq))R � uv] � �2u, (8.2)

∂v
∂t

= g[ J̃ i(u)�(u)R � uv] � d�2v, (8.3)

∂R
∂t

= [dcell � �̃2(u)R]�2R � r̃R(1 � R)

� �̃2

∂

∂u
(ueq)R2�2u, (8.4)

where all the parameters appearing in equation (8.2) are
now dimensionless ratios of biological length- and time-
scales:

g = �2
ykac∗/Da, J̃ 1

a = J 1
aReq/kac2

∗, J̃ a(u) = Ja(ca, c)Req/(kac2
∗),

d = Di/Da, J̃ i(u) = Ji(ca, c)Req/(kac2
∗),

dcell = Dcell/Da, �̃ = �Req/Da, �̃2 = �2Req/Da, r̃ = r�2
yReq/Da.

(8.5)

It would be useful to obtain these dimensionless ratios
directly from the biological rate constants that we have
estimated in this paper. Unfortunately we do not possess
a complete list of such parameters (for example the mol-
ecular identity of the inhibitor is not known). We have
therefore worked backwards and chosen the ratios to exhi-
bit the patterns we desired. Most of the ratios are of order
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Figure 2. Typical results of numerical integration of
equations (8.2)–(8.4) for (a) the TGF-β, (b) inhibitor and
(c) cell density. (d) The proximodistal length of the apical
zone as a fraction of its anteroposterior width. The left-hand
scales in (a)–(c) represent the concentrations as a fraction of
the equilibrium concentrations (i.e. 1.0 = equilibrium). Note
that the variations in the AER are smooth and the apparent
discontinuities in the resulting skeletal structures seen in the
figure (humerus, radius and ulna, and digits) are a result of
the fact that the changes in stability of the different patterns
occur on a very short time-scale compared with growth.
(The FGF concentration in the active zone is assumed to be
constant in these simulations as a result of release by the
dorsal and ventral ectoderm. The numerical method was an
explicit finite difference scheme. The plot has 80 × 159 grid
points.)

unity, except for Di/Da � 10 to ensure that pattern-
forming instabilities appear and g�1 to ensure that these
patterns are of the correct size (very roughly linear stability
analysis suggests the number of pattern features is of the
order √g /(2�)).

We used the following parameters and functions for the
activator–inhibitor dynamics in simulations for figure 3a:

d = 10.0, g = 4500, J̃ a(u) =
15.5417 u

3.42421 � u
,

J̃ i(u) =
17.3913 u

3.68261 � u
, J̃ 1

a
(ueq) = 0.03,

�(u) =
2.76744 u

7.14 � 3.71395 u
. (8.6)

These choices are based on the assumption of Michaelis–
Menten first-order dynamics for the activator and inhibitor.

Proc. R. Soc. Lond. B (2004)

(a)

(c)

(b)

Figure 3. Typical examples of skeletal structures allowing for
growth. After the initial cellular condensations form (as seen
in figure 2), we have assumed that growth occurs at a
constant rate. Consequently, earlier condensations (as well as
cartilage elements) are subject to more growth than later
ones. The skeletal form depends on parameter values, time-
dependent changes in the active zone and initial conditions.
In (a) several modes can grow, whereas only a few can grow
in (b) and (c). The influence of initial conditions on the final
form can be seen in (b) and (c), which have the same
parameter values but different initial conditions. All these
properties must be selected for by evolution to achieve a
specific skeletal form.

Other choices can be made in the light of future knowl-
edge of the biochemistry involved, but we believe that
though these choices will affect the results quantitatively,
they will not change the system’s generic qualitative
behaviour. There is a unique equilibrium (ueq, veq, Req).
It is given by ueq = 1.100, veq = 0.986 and Req = 1.0. For
the cell dynamics, we used the following parameters:

dcell = 0.1, = �̃2 = 1.366,(u) =
0.116279 u

7.14 � 3.71395 u
, r̃ = 20.0.

(8.7)

It is worth noting in equation (8.4) that the dependence
of deffective on the concentration u is relatively weak for our
choice of parameters. In particular, the effective diffusion
coefficient is always positive. (For example, the effective
cell diffusion coefficient at u = ueq and R = Req is
deffective = [dcell � λ̃2(u)R] = 0.084; whereas at u = 0.1 ueq,
R = Req, we have deffective = 0.098, and at u = 2 ueq,
R = Req, we have deffective = 0.077.)

We have solved equations (8.2)–(8.4) numerically on a
moving rectangle �(t) of constant scaled width 1.0 in the
y-direction and time-varying active-zone length �(t) in the
x-direction. We used an explicit Euler forward finite
difference scheme, typically using 80 × 159 grid points,
taking care to choose time steps such that numerical dif-
fusive instabilities did not occur.
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How should the active zone vary with time? The linear
patterning modes have the form Wmn(x, y) =
cos(�my)cos((�(n � 0.5)/�)x), and therefore to create k
skeletal elements in the anteroposterior direction we need
to select m = 2k, because the mode m creates m � 1 half-
periods of high and low activator concentration, and k
skeletal elements require 2k � 1 such variations. The
eigenvalue, n, is less critical in creating anteroposterior
structure but could affect proximodistal structural vari-
ations.

Thus the active zone has to change in such a manner
as to select the desired skeletal features. In particular, if
we want one skeletal element (the ‘humerus’) followed by
two skeletal elements (the ‘radius’ and ‘ulna’) followed by
three ‘digits’, then we need to choose the biological para-
meters carefully (presumably, this choice has occurred
biologically by evolution), so that we achieve a sequence of
active zone proximodistal to anteroposterior length-scale
ratios �1 → �2 → �3 such that:

(m1, n1) = (2, 2) is subject to exponential growth for �1,
(8.8)

(m2, n2) = (4, 1) is subject to exponential growth for �2,
(8.9)

(m3, n3) = (6, 0) is subject to exponential growth for �3.
(8.10)

We selected these structures computationally by reducing
the active zone length, so that the key linear modes we
need grow with time. We chose to reduce the active zone
length in a piecewise constant fashion. That is, there are
periods during which the active zone length � and apical
zone length �apical are constant while we allow the frozen
zone to grow with a steady velocity vgrowth. Then, on a very
short time-scale, we reduce � by increasing the size of the
proximal frozen zone (the apical zone size remaining
constant). These dynamics can be specified by a sequence
of active zone ratios � and associated time intervals �, dur-
ing which time the active zone ratio does not change. This
choice is certainly not unique and could be altered in the
light of new biological information (for example, we could
allow the change in active zone length to occur at a speci-
fied rate). We chose the length �(t) to be a decreasing
function of time; it drops for the simulation in figure 3a
from �1 = 0.39 to �2 = 0.31 to �3 = 0.21; in each case for
approximately the same time interval, � (see also the graph
at the bottom of figure 2). It is interesting to note that the
resulting selected patterns do not have very large spatial
gradients and are therefore consistent with the gradient
expansion methods we used in deriving equation (8.2).

In electronic Appendix B we perform a linear stability
analysis of equations (8.2)–(8.4). Using the parameters
above, we find that as a function of wavenumber k, the
largest eigenvalue �max (k2) is positive in the interval of k2

between [135.3, 801.4]. If a mode k2
mn falls into this

interval, it will grow with time. We note that if the interval
[Kmin, Kmax] is small, only very few of the eigenvalues
k2

mn will fall into this interval. So, in such cases, the grow-
ing modes can be selected quite precisely, and if these
linear modes represent the incipient skeletal form, then we
might expect a biologically robust structure to develop
(see figure 3b,c). If, however, the interval [Kmin, Kmax] is
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large, many modes will grow. In such cases, the structures
that can develop are quite diverse and in general their
selection is much less robust. (Robustness of pattern selec-
tion could presumably be achieved in such cases by sec-
ondary molecular stabilizing mechanisms.) At the same
time, combinations of growing modes with comparable
temporal growth rates allow for biologically more realistic
patterns (see figure 3a). For the specific parameters above
(corresponding to figure 3a), typically several such modes
occur (see tables 1–3, electronic Appendix B). Therefore,
although in general we can ensure that the required
sequence of modes grow, other modes will also appear.
Thus we expect the final form to be more complex than
a simple linear mode analysis would suggest.

Figure 3b,c illustrates the importance of the initial con-
ditions for the final outcome, as these two simulations
were made with the same set of parameters, and differ
only in the chosen initial conditions. Note that the third
group of segements (the ‘digits’) are negatives of each
other, i.e. dark stripes in one correspond to light stripes
in the other and vice versa. In the linear analysis, the two
functions differ only in the sign (� or �).

The AER and dorsal and ventral limb ectoderm are
directly underlain by a hyaluronan-rich matrix which is
inhibitory to cell condensation during the patterning
stages (Solursh et al. 1981; Solursh & Reiter 1988). This
inhibition (along with the inhibitory effect of ecotodermal
FGFs on condensation (Moftah et al. 2002)) would tend
to suppress solutions to equations (8.1)–(8.3) that resulted
in condensations at the boundary, making the selection of
biologically relevant patterns less subject to the choice of
initial conditions.

We ran the simulations in the time interval t = 0 to
t = 2.0, in scaled units. The nonlinear active zone dynam-
ics change the predictions of linear stability analysis, in
that the modes saturate with respect to concentration in
contrast to the continual growth or decay that linear stab-
ility analysis predicts. Additionally, the emerging patterns
are affected by the fact that the reactor–diffusion domain
is moving. In fact, the speed of change of the active zone
is an important parameter; our computer simulations have
shown that different speeds can give rise to very differ-
ent patterns.

We see from figure 3 that, as the ratio of the proximo-
distal length to anteroposterior width � of the active zone
decreases, the number of skeletal elements along the
anteroposterior length increases. This relation might seem
strange at first; indeed it is not obvious why, in general,
shortening the proximodistal length of the active zone
should give rise to more pattern elements along the
anteroposterior fixed length.

The reason is best seen by looking at the linear stability
analysis. We are interested in patterns that have m half-
periods along the anteroposterior length and n half-
periods along the proximodistal length. The correspond-
ing wavenumber on a rectangle of proximodistal length
� and anteroposterior length 1 (in scaled units) is
k2

mm = �(m2 � ((n � 1/2)/�)2). Only those patterns for
which the wavenumber k2

mn falls into a certain small fixed
interval controlled by the biology will undergo exponential
growth. So, for the three consecutive and decreasing
proximodistal lengths �1 � �2 � �3 we used to generate
figure 3, we must have:
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m2
s � ((ns � 1/2)/�)2 � const, (8.11)

for s = 1, 2, 3, where the constant only depends on the
reaction kinetics (not on the geometry). When � is small
enough, only n = 0 will solve equation (8.11), and thus it
is natural to assume that n3 = 0, i.e. the final pattern is
essentially homogeneous along the proximodistal axis and
consist of ‘digits’. Thus the above constant equals m2

3 �
1/(4�2

3) where m3 is the number of ‘digits’. For s = 1 or 2,
ns � 0 is also a solution. Then the number of elements ms

along the anteroposterior axis is less than the correspond-
ing number of digits m3. Clearly, at small � ratios, ‘digits’
are the only available growing mode, but at large � ratios,
more pattern-forming modes exist and selection must be
based on a combination of initial conditions, and interac-
tions with biomolecules such as FGFs and hyaluronan that
inhibit chondrogenesis near the ectoderm.

9. DISCUSSION

The dynamical system described by equation (6.1) rep-
resents a ‘bare bones’ mechanism for limb skeletal devel-
opment in that it incorporates a core set of cellular–
biochemical processes known to occur in limb bud mesen-
chyme. Further sculpting of the skeletal form would be
necessary (and perfectly consistent with the above
scheme) to introduce additional structural features. In
particular, differences in the character of the skeletal
elements across the anteroposterior axis, or in the con-
tours of individual elements along their dorsoventral axis,
could be caused by non-uniformly distributed gene pro-
ducts such as Sonic hedgehog, Hox and Wnt proteins,
which may alter cell response to the activators and inhibi-
tors considered in our model. Another model for skeleto-
genesis has been proposed based on cell traction forces
generated by mobile mesenchymal cells (Oster et al.
1983); however, we believe diffusible signals coupled to
haptotaxis better reflect current knowledge of the molecu-
lar mechanisms of mesenchymal pattern formation in
the limb.

There are other general issues that will influence growth
and form during skeletal development. Thus, although
partial differential equations are very appropriate to inves-
tigate large scales, it is clear that at distances of a few cell
diameters, this continuum approach must break down. At
smaller scales, point cell approaches (cellular automata
(e.g. Kiskowski et al. 2004)) and extended cell models
such as the Cellular Potts models (e.g. Izaguirre et al.
2004) will be needed. We have assumed that the ECM is
homogeneous, and that the differentiated cells have simi-
lar diffusion constants. Clear evidence to the contrary
should be incorporated into future simulations. The same
point applies to our use of rectangular geometry and zero-
flux boundary conditions. The influence of limb contours
creating convex and concave reactor–diffusion chambers
is now under active investigation, and will be reported in
a future publication. A further point should be made. The
skeletal elements themselves, once formed, will provide
obstacles and boundaries for the operation of further acti-
vator–inhibitor and cell–cell interactions in the developing
limb, which will influence phenomena not considered in
the ‘bare bones’ model, such as interdigital cell death, for-
mation of limb musculature and innervation of the limb.
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Species-specific carpal and tarsal structures of the wrist
and ankle need to be investigated further. These may form
because of transitions from stripe-like to spot-stripe pat-
terns which can occur in this class of equations (Shoji et
al. 2003). We suggest that integration of knowledge of
cellular and biochemical processes of development with
dynamical modelling, geometry and computational stra-
tegies will prove useful in understanding limb skeletal
development at a more detailed level, as well as other
aspects of organogenesis.
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ENDNOTES
1What was actually found is that TGF-β2 upregulates its own production
by the cell, rather than acting as a classical autocatalytic chemical species.
It is therefore in this sense of upregulating a biosynthetic process that we
use the term ‘activator’ in this paper.
2Again we use the term ‘inhibitor’ to mean a chemical that downregulates
a biosynthetic process.
3We use this term in preference to ‘reaction–diffusion’ to point out that
the active component is not a chemical reaction but a living cell with
complex response functions.
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