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a b s t r a c t

In this paper, we review the major mathematical and computational models of vertebrate limb develop-
ment and their roles in accounting for different aspects of this process. The main aspects of limb devel-
opment that have been modeled include outgrowth and shaping of the limb bud, establishment of
molecular gradients within the bud, and formation of the skeleton. These processes occur interdepen-
dently during development, although (as described in this review), there are various interpretations of
the biological relationships among them. A wide range of mathematical and computational methods have
been used to study these processes, including ordinary and partial differential equation systems, cellular
automata and discrete, stochastic models, finite difference methods, finite element methods, the
immersed boundary method, and various combinations of the above. Multiscale mathematical modeling
and associated computational simulation have become integrated into the study of limb morphogenesis
and pattern formation to an extent with few parallels in the field of developmental biology. These meth-
ods have contributed to the design and analysis of experiments employing microsurgical and genetic
manipulations, evaluation of hypotheses for limb bud outgrowth, interpretation of the effects of natural
mutations, and the formulation of scenarios for the origination and evolution of the limb skeleton.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The development of the vertebrate limb is one of the best stud-
ied examples of multicellular organogenesis [108,80,78]. The pro-
cess involves outgrowth from the body wall of tetrapods (i.e.,
amphibians, reptiles, birds, mammals: vertebrates other than fish)
of two pairs of mesenchymal (embryonic connective tissue) masses
covered by a specialized ectoderm (embryonic skin, continuous
with the rest of the body surface). All tetrapod limbs contain endo-
skeletons composed of rods and nodules of cartilage or bone, sepa-
rated by discontinuities, or joints. Thus, understanding limb
development involves addressing two main problems: that of limb
bud outgrowth and shaping and that of skeletal pattern formation
(Fig. 1).

The outgrowth and shaping problem lends itself to mathemati-
cal and computational modeling that takes into account the phys-
ical properties of the involved tissues (reviewed in [46]). The limb
bud mesenchymal mass – the mesoblast – is a deformable visco-
elastic material that is immiscible with the surrounding flank mes-
enchyme when it first emerges from the body. Its constituent cells
can change the mesoblast size and shape by dividing either iso-
tropically or directionally, and they can intercalate among one an-

other, stretching and distorting the tissue mass. Surrounding the
mesoblast is an epithelial sheet underlain by an acellular basement
membrane, both with mechanical properties of their own. The epi-
thelium is also the source of molecular signals that induce and
modulate the cellular behaviors of the underlying mesenchyme.

The endoskeletons of all vertebrate limbs exhibit repetitive mo-
tifs and are variations on a common morphological theme, so
understanding their generation is particularly well-suited to math-
ematical models in which a generic skeletogenic mechanism can
be hypothesized and its parameters varied according to plausibly
variant developmental scenarios. The nature of the patterns, and
of experimental results on skeletal patterning of randomized limb
mesenchymal cells in vivo and in vitro, have led to most such mod-
els being based on the physics of self-organizing systems (e.g.,
Turing-type reaction–diffusion processes) applied to the molecular
biology of cell–cell and cell–ECM interactions (reviewed in [81]).

A different view of skeletogenesis, which has been influential
over the past four decades, treats the skeletal pattern as a down-
stream readout by the cells’ genomes of spatial coordinates, the val-
ues of which are specified by graded concentrations of, or duration of
exposure to, ‘‘positional information’’ (PI) molecules [119,102]; re-
viewed in [111]. Here the generic aspects of the final pattern (i.e.,
the quasi-periodic arrangement of the discrete elements), are ig-
nored. The establishment and dynamics of the monotonic positional
gradients in this PI framework are also amenable to mathematical
modeling (see below). There is increasing recognition based on
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experimental tests, however, that the spatial patterns in question,
usually of diffusible morphogen molecules and Hox and related
transcription factors, are not sufficient to account for the actual fea-
tures of the skeletal pattern without including the self-organiza-
tional properties of the limb mesenchyme [112]. Most likely the PI
gradients fine-tune the details of the skeletal elements during their
formation [107].

Although limb bud outgrowth and shaping are thus conceptu-
ally separate problems from the formation of the skeleton, some
of the molecules that control skeletogenesis also influence out-
growth and shaping [79]. Limb bud shape and its developmental
transformation also influence the outcomes of proposed skeleto-
genic mechanisms. For example, in small spatial domains such as
the limb bud, the spatial patterns resulting from reaction–diffusion
and related self-organizing processes are strongly influenced by
the domains’ boundary conditions, size, and shape [10,127–129].

In what follows we first present a brief biological background
and then describe the main models that have been used to charac-
terize limb bud growth and shaping, and the generation of molec-
ular gradients in the mesoblast. Next we present a detailed
description of models employing self-organizing dynamics of skel-
etal patterning in vitro and in vivo. In the concluding section we
discuss the prospects for bringing together the various mathemat-
ical and computational approaches reviewed here. In particular, we
will describe the general form of a comprehensive model that in-
cludes a self-organizing skeletogenic component that evolves in
developmental time in the context of an autonomous limb bud

growth and shaping mechanism, and whose generated skeletal ele-
ments are customized by the local concentrations of dynamically
changing PI morphogens and transcription factors. A comprehen-
sive review of limb development models has recently appeared
[38], which in contrast to this contribution is directed primarily to-
wards a non-mathematical audience.

2. Biological background

2.1. Limb bud outgrowth and shaping

The limb emerges from the embryonic body wall, or flank, un-
der the influence of a diffusible morphogen, fibroblast growth fac-
tor 8 (FGF8), secreted by the ectoderm overlying the prospective
limb mesenchyme. In birds and mammals, as outgrowth proceeds,
a thickened ridge of ectoderm running anteroposteriorly (AP axis:
thumb to little finger) along the limb bud tip, the apical ectodermal
ridge (AER), forms and serves as the source of the FGF8. Early ef-
fects of FGF8 are to transform the prospective limb mesenchyme
into a more cohesive and mechanically active material than the
flank mesenchyme from which it is derived [18]. This has been sug-
gested to be responsible for its ‘‘phase separating’’ from the adja-
cent flank, rounding up, and propelling itself forward [18].

Factors secreted by the AER, including FGF8, are also responsi-
ble for keeping the mesenchyme of the limb tip in a developmental
labile state, primarily by suppressing its capacity to condense (see
below) and differentiate into cartilage [51]. Cartilage is not easily
reshaped, so the main determinants of limb shaping act at the dis-
tal (distant from the body) end of the developing limb, even as the
more proximal (close to the body) regions are undergoing chon-
drogenesis. This results in a proximodistal (PD) temporal sequence
of development. Factors that regulate the formation of the AER and
its AP length (discussed in the subsection on non-skeletally-isomor-
phic patterns, below), are indirectly involved in limb bud shaping.
In addition, biologically plausible mechanisms of the spatiotempo-
ral development of the skeleton (discussed in the subsection on
skeletal pattern formation, below), must incorporate the suppres-
sive effect of the AER.

After the limb bud has emerged, its outgrowth and shaping are
the result of the behaviors of the mesenchymal cells in the context
of the surrounding ectoderm. Here the morphogens secreted by the
ectoderm are also important. For many years the standard view
was that the effect of the morphogens, FGFs in particular, were
mitogenic, i.e., promoting cell division, and that limb bud out-
growth resulted from a proliferation gradient with its maximal va-
lue at the distal tip. Some of the mathematical models of
outgrowth and shaping described in the following section are
based on this biological mechanism. Recent work, however, has
shown that the mesenchymal cells of the limb bud exhibit a che-
motactic migratory response to FGF gradients [55] and oriented
movement and growth [9,121]. The orientation of the cells is
dependent on Wnt signaling, while FGF signaling affects cell veloc-
ity [41]. Limb mesenchyme may also exhibit oriented convective
flow, as seen in gastrulating mesoderm [125] (see [46], for a review
of oriented cell behaviors in the developing limb). These new find-
ings are increasingly being incorporated into mathematical models
of limb outgrowth and shaping.

Some models have considered the possibility that the dorsal
and ventral ectoderm act as a mechanical constraint that guides
the flow of the limb mesenchyme. While there is some evidence
for such a role for the ectoderm [11], there are also studies indicat-
ing that the dorsal ectoderm (with the possible exception of its
underlying basement membrane) is not absolutely required for
normal limb shaping [62].

Fig. 1. Development of a representative vertebrate limb (a chicken forelimb). The
limb bud at successive stages is shown as if transparent and its outgrowth and
shaping and the progress of chondrogenesis within it are both shown. The lighter
gray regions represent precartilage; the darker-gray regions represent definitive
cartilage. The single proximal element that forms first is the humerus (the femur in
the leg); the two elements of the mid-wing form next, the radius and the ulna (the
tibia and fibula in the leg); the distal-most, last-forming, elements are the digits.
Below, the proximodistal, anteroposterior, and dorsoventral axes are indicated on
an illustration of a human hand (modified from Forgacs and Newman [32]).
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2.2. Non-skeletally-isomorphic patterns of morphogens and other
molecules

The original formulation of the PI concept suggested that the AP,
and PD axes, described above, and the dorsoventral (DV: back to
front) axis defined a coordinate system of molecules that were
interpreted by the mesenchymal cells so as to assume their posi-
tion-specific fate [118]. The PI molecules were specifically postu-
lated to be non-isomorphic to the developing or final limb
skeletal patterns. That is, they were proposed to serve an informa-
tional (i.e., eliciting portions of the pattern that are hypothesized to
be independently encoded in the genome) rather than a prepat-
terning role [118].

It soon became clear that the limb axes are not specified inde-
pendently of each other [13], that the putative molecular determi-
nants of the axes are mutually regulatory [53,124], and that some
are indeed dispensable for the generation of the basic skeletal pat-
tern [56]. The specification of skeletal pattern by positional infor-
mation is also inconsistent with evidence that quasi-periodic
limb-like skeletons can form from dissociated, randomized mesen-
chymal cells repacked into ectodermal hulls [92,130]. Neverthe-
less, the assumption that the major features of the skeletal
pattern are set by cells’ exposure to continuous, non-skeletally iso-
morphic, fields of diffusible molecules produced by signaling cen-
ters oriented according to the three classical anatomical axes
remains a popular theme in models of limb development (e.g.,
[126,112], citing [63]).

In any case, experimental and theoretical studies on the gener-
ation of gradients of non-skeletally-isomorphic morphogens and
non-diffusible molecules (such as Hox transcription factors) in
the developing limb continue to be of significance. This is because,
as mentioned above, such factors are important determinants of
limb outgrowth and shaping (which indirectly affects the number,
size and shape of the skeletal elements that form within the grow-
ing bud), and also because the presence of different concentrations
of these factors, for various durations, during chondrogenesis,
influences the character of elements formed, fine-tuning and cus-
tomizing the skeletal structures [107].

Key signaling centers for establishing these gradients are the
AER, mentioned above as the major source of FGF8, and the zone
of polarizing activity (ZPA), the limb bud’s major source of the
morphogen Sonic hedgehog (Shh). The AER is essential for limb
outgrowth, shaping and skeletogenesis [97]. Sonic hedgehog was
thought to be the AP positional information determinant, but its
absence (along with a transcriptional regulator of its function,
Gli3) actually leads to increased numbers of digits via the impair-
ment of its role in limb bud shaping [56]. This indicates that Shh is
a modulator of skeletogenesis rather than part of its core genera-
tive mechanism.

A recent integrative description of the interplay among signal-
ing centers responsible for gradient systems in the developing
mouse limb postulates feedback loops involving the morphogens
FGF, Shh, Wnt and bone morphogenetic factor 4 (BMP4), and
Hoxd-class, Gli3 and Hand2 transcription factors [126]. This model
is relevant to the demonstrated roles of these gradients in the
maintenance and localization of the AER and ZPA, notwithstanding
its underlying assumption that they determine the skeletal pattern
according to the PI framework. Indeed, like other PI-based models,
that of [126] does not attempt to account for the actual placement
of skeletal elements.

2.3. Skeletal pattern formation

Initially the mesenchymal cells of the limb mesoblast are dis-
tributed uniformly within an ECM rich in the polysaccharide hya-
luronan. Before these cells differentiate into chondrocytes, they

transiently condense into tight aggregates at discrete sites where
the cartilaginous elements will ultimately form. Precartilage con-
densations (and before them, more subtle proto-condensations),
form when the ECM changes locally in composition, first becoming
richer in the glycan binding proteins known as galectins [8] and la-
ter in glycoproteins such as fibronectin. These aggregations are fur-
ther consolidated through cell–cell adhesive interactions mediated
by cell-surface attachment molecules (CAMs) such as N-CAM
[115], N-cadherin [86], and possibly cadherin-11 [57].

All the precartilage mesenchymal cells of the limb mesoblast
are capable of producing the skeletogenic ECM molecules and
CAMs but only those at sites destined to form skeletal elements
do so. There must be communication among the cells to divide
the labor in this respect. Galectins can act as morphogens as well
as adhesion molecules (reviewed in Gabius [36]) and one of these
molecules, CG (chicken galectin)-1A, plays both roles in the avian
limb bud earlier than any other known factors [8]. Another galec-
tin, CG-8, is part of a mutually excitatory loop with CG-1A at the
level of gene expression, but antagonizes the latter’s condensation
activating activity at the protein interaction level [8]. Later in the
chondrogenesis pathway diffusible factors of the TGF-b family
are produced. These promote the production of fibronectin [54]
and cadherins [113] and positively regulate their own synthesis
in limb bud mesenchyme [69].

Although the AER is a unique source of a particular outgrowth-
promoting subset of FGFs, the entire limb ectoderm produces mor-
phogens of this class [61]. The FGFs produced by the ectoderm af-
fect the developing limb tissues through three distinct FGF
receptors. The cells of the apical zone express FGF receptor 1
(FGFR1) [91,106]. Signaling through this receptor presumably
mediates the suppressive effect of the AER in this region of the
developing limb. As the chicken limb elongates, cells begin to con-
dense at discrete foci, but only at a sufficient distance (�0.3 mm)
from the AER. Cells at sites of incipient condensation express
FGFR2 rather than FGFR1 [106,87,72,91]. Activation of these
FGFR2-expressing cells by FGFs induces a laterally-acting (that is,
peripheral to the condensations) inhibitory effect which sup-
presses cartilage differentiation [72]. Signaling via the Notch path-
way, which is initiated by cell–cell contact, also plays a part in this
lateral inhibitory effect [34].

The result of the pattern-forming process is that a stereotypical
arrangement of first, cartilage elements, and then the bones that
replace them in most tetrapod species, emerge in a proximodistal
fashion. Almost invariably there is one element (the humerus or fe-
mur, referred to generically as the ‘‘stylopod’’) attached to the
body, two elements (the radius and ulna, or tibia and fibula: the
‘‘zeugopod’’), and a species- or limb type-characteristic number
of wrist elements, followed by fingers or toes (the ‘‘autopod’’).

This summary indicates that the limb bud mesenchyme is sub-
ject to a variety of intrinsic and extrinsic interactions that have
both activatory and inhibitory effects on precartilage condensation
and chondrogenesis. Collectively these cellular and molecular
interactions constitute a core mechanism for the generation of
the cartilaginous primordia of the limb skeleton. Several of the
models described in the following section explicitly incorporate
these processes, characterizing parameter choices and other condi-
tions under which biologically realistic skeletal patterns are
formed.

3. Mathematical models

3.1. Models primarily involving growth and shaping of the limb bud

Dillon and Othmer ([22]; reviewed in Dillon [23]) presented a
continuum mathematical and computational model coupling fluid
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flow and elastic boundaries (the immersed boundary method;
[89]), to describe limb bud growth in 2D. They provided one of
the first computational tools for exploring the effects of mutations
and experimental interventions on the relation of gene expression
patterns and growth in the developing limb. The model incorpo-
rates the effect of morphogens (i.e., FGFs and Shh) with sources
at the AER and the ZPA, the dynamics of which are governed by
reaction–diffusion–advection equations. Since spatiotemporal pro-
files of these factors are generated in the model and contribute to
growth and shaping of the bud (the proximodistal gradient of FGF
is suggested to induce a gradient of cell division, for example), the
model can also be considered in the class (described below) deal-
ing with the generation of morphogen patterns that are non-iso-
morphic to the skeleton.

In the Dillon–Othmer model a viscous fluid domain of constant
density representing the limb bud mesoblast is surrounded by a
moving boundary incorporating the mechanical and biochemical
properties of the ectoderm. The fluid motion is described by the
Navier–Stokes equations

r � v ¼ Uðc; x; tÞ; q
@v
@t
þ qðv � rÞv

¼ �rpþ lðr2v þ 1
3
rUÞ þ qF: ð1Þ

Here U is the local source strength for growth which depends on
morphogens c1 and c2 (c for simplicity), the location x of the tissue
within the limb bud and the age t of the limb. The variable v is the
fluid velocity, q is the fluid density, p is the pressure, and l is the
fluid viscosity. The term F is the force density that limb bud ecto-
derm exerts on the fluid surrounding it. The evolution of the mor-
phogens is modeled by a reaction–diffusion–advection system.

@c
@t
þr � ðvcÞ ¼ Dr2c þ RðcÞ: ð2Þ

D is the diffusion matrix for the morphogens and RðcÞ is the pro-
duction rate. The Dillon–Othmer model was unique in its consider-
ation of the relationship between growth as a physical process, the
potential effects of morphogens on the parameters of growth, and
the objective of reconciling empirically measured shapes and
growth rates distributions of identified morphogens during the
course of development. While some of the physical and biological
assumptions of the model have been reevaluated in light of new
information (see below), it (along with the extension by the same
group [26]; see below)) remains the only one to date to integrate
the two main non-skeletogenic processes.

In a later 2D treatment, Murea and Hentschel [74] studied limb
outgrowth as a free boundary problem, controlled by a creeping
flow of the expanding mesoblast with a nutrient-driven volume
source and an ectodermal boundary with nonuniform surface ten-
sion. Unlike in Dillon and Othmer [22], no assumption was made
concerning a proximodistal gradient of mitoses, a departure that
was later validated empirically [9]; see below). The authors also
suggested that the high viscosity and low Reynolds number of
the mesenchyme justifies, rather than the full Navier–Stokes equa-
tion, the use of the simpler Stokes equation.

�lDv þrp ¼ f þ l
3
rS: ð3Þ

Here p is a pseudopressure field or ‘‘tissue pressure,’’ defined by
p ¼ P � pair, where P is the pressure of the fluid and l is the viscos-
ity of the fluid. The gradient of p yields the velocity of the limb
bud’s outgrowth.

A novel finite element algorithm was developed to deal with a
free boundary in nonconvex domains (i.e., the proximal portions
of the growing bud, which have straight anterior and posterior

edges). The introduction of a variable surface tension in the ecto-
derm (a lower value at the tip) ensures that the limb bud expands
in a proximodistal direction rather than ballooning out. This is a
biologically plausible solution to this problem (see [11]), which
in the model of Dillon and Othmer [22] was implemented by the
ad hoc elastic tethering of opposite points on the ectoderm.

Morishita and Iwasa [73] explored the potential of a discrete
model of ‘‘growth-based morphogenesis’’ to describe changes of
organ morphology during limb development. Like the fluid
mechanics-based model described above, this discrete model de-
scribes the growth of the vertebrate limb bud as an interaction be-
tween tissues with different physical properties. The model
represents the mesenchyme and epithelium each by a network of
nodes, denoted, respectively, as M- and E-nodes. To model the
dynamics of the AER, a key component in regulating limb out-
growth, the authors used the following reaction–diffusion equation
defined on the nodal network:

cM
i ðt þ dtÞ ¼ cM

i ðtÞ þ D
X

j

ðcM
j ðtÞ � cM

i ðtÞÞ þ
X

k

ðcAER
k � cM

i ðtÞÞ
( )

dt

� ccM
i ðtÞdt: ð4Þ

cM
i is the AER-signal concentration at the M-node i, cAER

k is the
AER-signal concentration at the E-node k of AER. The AER signal
is assumed to diffuse only between linked nodes with a diffusion
constant D. The chemical flux at each node is proportional to the
difference between the focal node and its neighbors. The first sum-
mation term includes all M-nodes j linked with the node i, and the
second summation includes all E-nodes k linked with the node i.
cAER

k is assumed to be constant. c is a degradation rate of the
AER-signal at each M-node.

By running model simulations under their growth-based mor-
phogenesis assumption (which has recently been questioned; see
below), the authors concluded that: (1) the ratio of limb bud length
to limb bud width is determined by the spatial pattern of volume
sources realized through cell proliferation in the mesenchyme;
(2) elastic balance between mesenchyme and epithelium is re-
quired for normal morphogenesis; (3) normal elongation of limb
bud is not observed if the domain with high proliferation activity
does not dynamically change with the growth and deformation.
Compared to the viscous flow/FEA approach, the adaptivity and
simple computational implementation of this discrete model make
it useful in analyzing the control of organ morphology by the spa-
tiotemporal pattern of volume sources.

Boehm et al. [9] presented a fluid dynamics model (like [22] and
[73], but in 3D, using a finite element computational approach (like
[73]. The model employs the Navier–Stokes equations to represent
the mesenchyme as a viscous incompressible fluid whose volume
increases corresponding to s, a distributed source term (as used
in the earlier two models), representing the patterns of cell divi-
sion, for which a set of new data were provided. As in Murea and
Hentschel [72], omission of the convection term was justified by
the high viscosity of the limb bud mesenchyme:

@v
@t
þrp� 1

Re
r � ½rv � ¼ 0;r � v ¼ s; ð5Þ

where v is velocity, p is pressure, and Re is the Reynolds number.
The source term s was directly calculated from the new atlas of cell
cycle times.

Numerical simulations, supported by new measurements and
parameter optimization, suggest that contrary to long-held
assumptions, local sources of isotropic proliferation were not suffi-
cient to account for the shape of the growing limb bud (a feature
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not only of the models of [22] and Morishita and Iwasa [71], dis-
cussed above, but also of the cellular automata-based limb bud
shaping model of [90]. An example of the simulations of Boehm
et al. [9] is shown in Fig. 2. The limb mesoblast is represented as
an incompressible fluid with a distributed source term, s represent-
ing the patterns of cell division. The final growth pattern (A) shows
a discrete region of very high proliferation at the distal tip (red/yel-
low) and shrinking areas dorsal and ventrally (blue). The resulting
tissue displacements (B) generate a shape (green surface in C and
D) which shows a good correspondence to the real shape (blue in
D), but only for a distribution of proliferation rates in conflict with
experimental values.

The authors thus concluded that directional cell activities (i.e.,
oriented cell division, as well as oriented cell motility; [121], not
incorporated in these simulations, are likely to be the driving
forces for limb outgrowth. This theoretical prediction led to the
discovery of a highly branched and extended cell shape composed
of dynamically extending and retracting filopodia and a distally
oriented bias in Golgi position, as well as a bias in the orientation
of cell division [9].

An integrated view of the newly appreciated role of directional
activities in limb bud outgrowth, including the tissue-level expul-
sive forces generated by the mechanically excitable flank acting on
the forming limb bud [18], is presented by Hopyan et al. [46].

3.2. Models primarily involving dynamics of morphogens non-
isomorphic to the skeleton

No evidence has ever been found for a genomic representation
of the limb skeletal pattern that would permit non-isomorphic dis-
tributions of morphogens, or duration of exposure to them, to be
interpreted in a cell-autonomous fashion so as to induce differen-
tiation into spatially appropriate portions of the skeleton. Nonethe-
less, the assumption that such an interpretive mechanism exists
(as required by the PI model), has motivated many experimental
studies tracking the spatiotemporal dynamics of candidate PI mor-
phogens, as well as several mathematical and computational mod-
els of these dynamics.

An early example of such work is found in two papers by Mein-
hardt [64]). The model addressed a number of issues in limb devel-
opmental biology, such as the positioning of the limbs along the
body axis and the regeneration of limb structures in urodele
(tail-bearing) amphibians, both outside the scope of this Review,
but also the development of the limb skeleton, which is within
our range of topics. The novel concept of this paper, which was ap-
plied to each of the developmental problems, is the formation of
new structures, including gradient sources, at the interface of
two or more distinct tissues or populations of cells. Meinhardt calls
this a ‘‘boundary model’’ to contrast it with the ‘‘gradient hypoth-
esis’’ proposed by the developers of the PI idea [109]. In the latter,
each cell’s positional identity is determined by the local values of
two chemical concentrations or exposure-duration gradients,
whereas in the former, the direct confrontation of independently
induced cell populations set up gradients unrelated to the determi-
nants of the original tissues, which modulate the further spatially
nonuniform development of one or both of the interacting cell
types [63].

The Meinhardt boundary model has proved useful in accounting
for the properties of several developmental systems (reviewed in
Meinhardt [66]), despite the lack of experimental support for the
notion that gradients purportedly established by this mechanism
in the limb are used as positional information to specify locations
of skeletal elements. Non-skeletally isomorphic gradients do have
a role in fine tuning skeletal element identities, however (see be-
low), making the boundary model and later accounts of non-
isomorphic pattern formation of continuing relevance to limb
development.

The gradient system considered in Meinhardt [64] is presumed
to specify positional identity along the AP axis of the limb bud. In a
second paper in this series Meinhardt proposed to unify the gener-
ation of PD positional information with that of AP positional infor-
mation via the same boundary model [64]. This contrasts with the
original PI model for this system, which used the idea that there is
an endogenous cellular clock that caused cells in a non-differenti-
ating distal environment (the ‘‘progress zone’’; [102] to take on
more distal fates in proportion to the duration of their residence

Fig. 2. Results of computational optimization of a finite-element model for limb bud shaping (slightly modified from Boehm et al. [9]). Limb orientations are as shown in
Fig. 1.

Y.-T. Zhang et al. / Mathematical Biosciences 243 (2013) 1–17 5



Author's personal copy

there. Meinhardt suggested an alternative ‘‘bootstrap’’ model by
which proximal differentiating cells signal (by the boundary
confrontation mechanism) to the AER, causing it to keep the levels
of the morphogen it produces elevated above the values employed
to specify the distal-most positional identities of the limb [64].

Although the described papers do not present detailed mathe-
matical models, they reframed Turing’s partial differential equa-
tion (PDE)-based chemical reaction–diffusion model in a fashion
relevant to developmental systems as ‘‘local autoactivation with
lateral inhibition’’ (LALI) mechanisms (reviewed in [65] and [66]).
Coming before anything was known about the molecular nature
of the AER and ZPA signals, Meinhardt insightfully modeled the
spatiotemporal dynamics of generic morphogens using the LALI
mechanism.

The general form for such Turing-type systems is

@C
@t
¼ Dr2C þ RðCÞ: ð6Þ

where C is a vector (c1; c2; . . . cn) representing the concentrations of
morphogens produced by the cells of the developing organ (e.g., the
limb bud) with net rate RðCÞ, and D is a diagonal matrix, the terms
of which are the diffusion constants of the morphogens in the tis-
sue. Generalized Turing systems with mixed boundary conditions,
inhomogeneous domains and spatially varying diffusivities were
studied in Benson et al. [7], Dillon [24], and Dillon et al. [25] among
others. As will be seen below, they have proved useful not only in
the analysis of spatiotemporal dynamics of non-isomorphic mor-
phogen patterns, but also provide the underlying modeling frame-
work for most accounts of morphogen patterns isomorphic to the
limb skeleton.

Othmer and coworkers [26] extended their earlier growth and
morphogen patterning model [22] by incorporating newer findings
on the Shh signaling pathway, specifically the involvement of the
Shh receptor Patched (Ptc) and the associated membrane signal
transduction factor, Smoothened (Smo) [117,21]. The problem they
addressed was related to experiments in which the spatial profile
of Ptc and of Smo-mediated signaling were altered by ectopically
introduced Shh. These experiments were difficult to interpret
without unsupported assumptions concerning the diffusion rates
of different forms of Shh.

In modeling the network of interactions by reaction–diffusion
equations in both 1D and in 2D (where the mutual feedback
interactions of FGF from the AER and Shh from the ZPA [85] were
represented), the authors incorporated new terms for key Shh
receptor and mediator proteins, coupled in the 2D case (in addition
to terms for FGF) with the Navier–Stokes fluid mechanics equa-
tions of their earlier treatment. These models were then used to
simulate the effects of ectopic sources of Shh, reproducing experi-
mental results, which in some cases were counterintuitive.

This approach thus exemplified how ‘‘reaction’’ and ‘‘diffusion’’
in biological Turing-type systems could depart from their purely
chemical and physical versions, while behaving in a formally sim-
ilar manner. The signaling network studied involved Shh, the Shh
transmembrane receptor Patched (Ptc), and Smoothened (Smo), a
transmembrane protein mediating Shh signaling through phos-
phorylation of the Gli family of transcription factors. Part of the
reaction–diffusion system describing the interaction of Shh and
Ptc can be described briefly as follows:

[rate of change of Shh] = [diffusion of Shh] � [association of Shh
and Ptc] + [disassociation of Shh–Ptc complex] � [degradation
of Shh] + [Shh production],
[rate of change of Ptc] = �[association of Shh and Ptc] + [disas-
sociation of Shh–Ptc complex] � [association of Smo and
Ptc] + [disassociation and degradation of Smo–Ptc com-
plex] + [Ptc productions by itself and by Smo] � [degradation
of Ptc],
[rate of change of Shh–Ptc complex] = [association of Shh and
Ptc] � [disassociation and degradation of Shh–Ptc complex],

The system describing interaction of Smo and Ptc is similar.
Smo has two forms: the active and inactive forms. Active Smo asso-
ciates with free Ptc and inactive Smo interacts with the Shh–Ptc
complex. By introducing these additional biologically based inter-
actions into their model, the authors were able simulate the differ-
ent effects of Shh under the assumption that different forms of Shh
have the same diffusion constant (Fig. 3). The figure compares sim-
ulated and experimental distributions of Shh at successive times
after implantation of Shh beads (upper row) or ZPA tissue (lower
row). Notably, the simulation reproduce the experimentally

Fig. 3. Computational and experimental Patched (Ptc) responses to Sonic hedgehog (Shh) bead implants (upper panels) and ZPA tissue implants (lower panels). (Upper)
Numerical simulations of Ptc concentration 2, 6, and 18 h after bead implants (A, C, and E, respectively). (Lower) Ptc concentration 12, 16, and 20 h after tissue implant (A, C,
and E, respectively). Experimental results are from Drossopoulou et al. [28] for ptc transcript expression 2, 6, and 16 h post-bead implants and for ZPA grafts, 4, 8, and 16 h
post-implant (B, D, and F, respectively). The figures for numerical simulations were rescaled (from Dillon et al. [26]).
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observed posterior–anterior ptc expression wave followed by
restriction of expression near the implant site. Although the
assumption of equal diffusion coefficients may not be entirely valid
for Shh (see [29]), the approach of Dillon et al. [26] was useful in
demonstrating the potential impact of network complexity on
the physical parameters of the simpler physical systems that serve
as paradigms for these developmental models.

A different aspect of the generation of non-isomorphic morpho-
gen patterns in the developing limb was addressed in a reaction–
diffusion model by Hirashima et al. [45]. These authors, like Dillon
et al. [26], studied the role of coupled dynamics of positive feed-
back and feed-forward interaction between FGF expression at the
AER and Shh expression at the ZPA, in their case addressing the
question of why, given the positive effect FGF on the production
of Shh, the sources of the two morphogens remain spatially sepa-
rated. The model was implemented on a simplified one dimen-
sional domain with AER at the left boundary point and ZPA in
the region at a chosen distance from the AER. In accordance with
the limb bud’s properties, FGF molecules diffuse from the AER
and Shh diffuses from the mesenchymal cells, following the usual
diffusion equations. To model the feed-forward regulation, the
authors postulated a repressor that inhibits Shh expression. The
coupled dynamics of the repressor and Shh expressions were de-
scribed as follows:

@R
@t
¼ aR

Fh2

Fh2 þ Kh2
2

� cRR;
@Sin

@t

¼ aS
Fh1

Fh1 þ Kh1
1

� Kh3
3

Rh3 þ Kh3
3

� ðcS;in þ bSÞSin; ð7Þ

The right hand side of the first equation stipulates that the level
of repressor R increases with the extracellular FGF concentration F
with Hill coefficient h2. Sin denotes the expression level of Shh in
the mesenchymal cells. aR;aS; cR; and cS;in are parameters for pro-
duction and degradation of R and Shh.

bS is the rate of transport of Shh to the outside of the cells.
K1;K2; and K3 are the dissociation constants, and h1;h2; and h3

are the Hill coefficients.
Drawing on experimental evidence [58], the model postulates

the Fgf expression level in the AER cells, denoted by FinðtÞ, to be
stimulated by the extracellular Shh concentration S,

d
dt

F inðtÞ ¼ aF
Sh

Sh þ Kh
� ðcþ bÞF inðtÞ; ð8Þ

where aF and c are the FGF production rate and degradation
rate, respectively. b is the rate of active transport of FGF to the extra-
cellular space. K and h are the dissociation constant that
gives half-maximal output and the Hill coefficient, respectively, h
being assigned different values in different instances of the
model. The feedback regulation between the AER and the ZPA makes
the distance between them robust to parameter changes, a factor
important for their developmental roles. Although several papers
have appeared subsequently on the interactions between the AER
and ZPA morphogens (e.g., [5,6], see below), the signaling center
spacing model of [45] has yet to be subjected to decisive tests.

Introducing two additional regulatory interactions that influ-
ence the expression of the AER and ZPA morphogens FGF and
Shh, namely another morphogen, BMP4, and a secreted antagonist
of BMP4, Gremlin1 (Grem1), Bénazet et al. [6] used an ordinary dif-
ferential equation (ODE) approach (i.e., setting aside for the analy-
sis the contribution of diffusion or other spatial transport of these
released factors considered in PDE approaches) to devise a self-
regulatory system of interlinked signaling feedback loops. The
system has the following form,

dB
dt
¼ l� d � G � B

Bþ K0

� �
� aB � B;

dG
dt
¼ pG1

Bn

Bn þ Kn
1

� �
þ pG2

Sn

Sn þ Kn
2

� �
� aG � G;

dS
dt
¼ pS

Fn

Fn þ Kn
4

� �
� aS � S;

dF
dt
¼ pF

Kn
3

Kn
3 þ Bn

� �
� aF � F;

ð9Þ

where B, G, S and F represent the concentrations of BMP4, Grem1,
Shh and AER sourced FGF (AER-FGF), respectively.

Based on experimental results (for the network connectivity;
the kinetic details being largely undetermined), BMP4 is inhibited
by Grem1 following Michaelis–Menten kinetics, and d is the max-
imum inhibition rate per unit of G with K0 the half saturation. 1=aB

is the half-life of the BMP4 protein and BMP4 levels are increased
at the constant rate l. Grem1 is positively controlled by both BMP4
and Shh. Hill functions are used to model Grem1, with the maximal
velocities pG1 and pG2, and the half-maximal induction concentra-
tions corresponding to K1 and K2, respectively. The half-life of
Grem1 is 1=aG. The negative regulation of AER-FGF by BMPs is
modeled by a Hill function. pF is the maximal velocity and K3 is
the half maximal induction concentration. 1=aF is the half-life of
FGF protein. The positive regulation of Shh by AER-FGFs is modeled
by a Hill function with maximal velocity pS, half maximal induction
concentration K4 and a half-life 1=aS. n is a common Hill exponent
in all equations.

Numerical simulations of this system reproduced the experi-
mental result that BMP4 and Shh activities are mutually antagonis-
tic. Whereas the ODE model did not provide an account of spatial
distribution of the morphogens, it enabled simulation of temporal
changes in expression of the genes during development. Simula-
tion results, for example, indicated that BMP4, which functions up-
stream of the genes specifying Grem1 and Shh, first initiates
Grem1 expression (at a time corresponding to embryonic day 9),
but increasing levels of Grem1 then lowered BMP4 activity rapidly
(corresponding to embryonic day 10), which in turn induced the
rise of Shh, Grem1, and AER-FGF activities in combination with
low and persistent BMP4 activity (seen at embryonic day 11).

The simulations suggested that the interactions considered
could explain why intact epithelial–mesenchymal feedback signal-
ing buffers low expression of Shh. Specifically, without an intact
Grem1-Bmp4 feedback loop, the loss of one copy of Shh caused a
reduction in the number of digits formed, reproducing an experi-
mental result. Other experiments, however, indicate that Shh is
not required for the formation of digits, and indeed more digits
can form when it is absent than when it is present [56,35].

As with all the other models focused on morphogens non-iso-
morphic to the skeletal pattern, the underlying assumption of the
approach of Bénazet et al. [6] is that the generated gradients pro-
vide positional information for the specification of the skeletal pat-
tern. Experimental verification of this approach would involve
demonstration of a genomic ‘‘look-up table’’ or other representa-
tion of the mapping between morphogen distributions and cell
fates to specify the ‘‘interpretation’’ component of the PI frame-
work [118]. No such representation has been adduced thus far,
and consequently there are no published mathematical or compu-
tational models in this paradigm that simulate the arrangement of
limb skeletal elements.

3.3. Models involving dynamics of morphogens isomorphic to the
skeletal pattern

Wilby and Ede [122] were the earliest to formulate a mathe-
matical model that produced discrete skeletal elements in a
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limb-like arrangement. In doing so they explicitly contrasted the
modeling strategy of employing a spatially periodic gradient to
generate the periodic aspects of the skeleton to the positional
information approach, which used one or more monotonic gradi-
ents along and required numerous thresholds to encode the inter-
pretation of the gradient(s). These authors rejected, based on its
purported instability, a Turing-type reaction–diffusion mechanism
for the generation of the quasiperiodic patterns of the skeleton in
favor of one based on automata theory, in which cells followed
simple rules for differentiation, division, and movement based in
part on what their neighbors were signaling. The rules were as
follows:

(1) cells are sensitive to their internal concentration of a freely
diffusible morphogen M;

(2) at concentrations of M below a lower threshold T1 cells are
inactive;

(3) at concentrations of M above T1, cells synthesize M;
(4) at concentrations of M above a higher threshold T2 cells

actively destroy M;
(5) the transformations ‘‘inactive to synthetic’’ and ‘‘synthetic to

destructive’’ are irreversible.

These rules are summarized in the following scheme:

½Inactive� !½M�>T1½Synthetic� !½M�>T2½Destructive�:

In the model, diffusion is simulated as a flux F of morphogen
concentration M between adjacent cells where
F ¼ d� ð½M�i � ½M�jÞ per time unit, d being an arbitrary diffusion
constant and ½M�i and ½M�j the concentrations of M in adjacent cells.
The constant d includes the term 1=h2 required by Fick’s first law,
where h is the distance between cells.

The interactions of synthesis, destruction, and diffusion cause a
‘‘trailing’’ peak of M to stabilize between two areas of destruction
and the ‘‘leading’’ peak to initiate a new area of destruction. The
end result is a periodic pattern and periodic residual gradient. Link-
ing the initiation of destruction of M with the differentiation of car-
tilage allows patterning and differentiation to proceed
simultaneously but leaves the residual gradient available for fur-
ther patterning.

Wilby and Ede also presented a modification of their model that
simulated partitioning of the pattern along the proximodistal axis
by generating a set of limb shapes representing the regions added
by growth in each developmental stage, while physically removing
the proximal areas once they have been patterned. This ‘‘growth
increment’’ version of the model produces a set of small cartilage
elements, orientated along the PD axis and showing a distinct pos-
terior-anterior polarity. The model entails an inherent connection
between shaping and skeletal patterning of the limb, and indicated
that models of its class (i.e., those generating periodicities) could
straightforwardly account for normal and abnormal (e.g., mutant)
limb development, the results of experimental manipulations such
as ZPA grafting and mesoblast reaggregation, and the skeletal
forms of extinct tetrapods.

Since the time of Wilby and Ede’s model there has been in-
creased acceptance of the applicability of reaction–diffusion-type
mechanisms to developmental pattern formation. In particular,
increased cell and molecular knowledge has shown (as mentioned
above) that ‘‘reaction’’ and ‘‘diffusion’’ functions can be embodied
in complex biological processes while still retaining the formal
features of the elegant symmetry-breaking schemes of Turing
[114] and Meinhardt and Gierer [65] (see [50] for a review).
Moreover, the sensitivity of reaction–diffusion systems to varia-
tion of parameters and boundary conditions that motivated Wilby
and Ede [122] to seek a more stable alternative becomes less

problematic when the evolutionary dimension is considered. A
reaction–diffusion mechanism can provide a range of patterns
during the origination of a character such as the limb skeleton,
with some forms gradually become stabilized by canalizing selec-
tion over time (see [82]). Thus, while the paper of Wilby and Ede
[122] represented a clear conceptual advance in the modeling of
limb development, its influence was felt in its emphasis on the
limb’s inherent periodicity rather than in the relatively ad hoc
mechanism it presented.

A few years later, Newman and Frisch [83] modeled limb devel-
opment as a quasiperiodic pattern-generating process, but in con-
trast to Wilby and Ede [122] they invoked the ability of the
reaction–diffusion mechanism to produce chemical standing
waves. They reasoned that precartilage condensations could be in-
duced by peaks of a morphogenetic agent, which they identified
with the recently characterized ECM protein, fibronectin, found
to be elevated in the condensations [110]. Because fibronectin
was known to have both soluble and tissue-bound forms they sug-
gested that it acted as both a diffusible morphogen and an aggre-
gating factor. The authors modeled the generation of chemical
prepatterns isomorphic to the skeletal elements using the follow-
ing PDE system (anticipating those later employed by [64] and
[22] for the dynamics of non-isomorphic gradients; see above) to
describe the production and diffusion of fibronectin in a 3-dimen-
sional tissue:

Dr2c þ rc ¼ 0; ð10Þ

where c is the molecule’s spatially dependent concentration.
Although Eq. (10) was not solved in a time-dependent fashion
(and indeed the activator–inhibitor circuitry required for the pat-
tern forming instability was not made explicit), it was shown that
the system has stationary solutions (for fixed domains) of the form
(see also [84]):

XðxÞYðyÞZðzÞ ð11Þ

with

XðxÞ ¼ sin mxpx
lx

mx ¼ 1;2; . . . ;

YðyÞ ¼ sin mypy
ly

my ¼ 1;2; . . . ;

ZðzÞ ¼ c0ekz;

ð12Þ

where x is the AP axis, y the DV axis and z the PD axis. The x axis is
the dimension along which the digits are arrayed. It varies in length
in different species, and even between fore and hind limbs of the
chicken embryo, where it remains constant during development
in the former and expands distally in the latter. The y axis remains
of constant length in all developing vertebrate limbs, corresponding
to the presence of only single elements in the DV direction at all
points along a mature limb.

The z axis varies in length during development as the limb
grows out in the PD direction. However, this dimension does not
comprise the entire PD length, but only the distal, unpatterned
portion of the limb bud within which reaction–diffusion dynamics
occurs. This was called the ‘‘diffusion chamber’’ in Newman and
Frisch [83] and variously, the ‘‘active’’ and ‘‘LALI’’ (local autoactiva-
tion-lateral inhibition; see above) zones in subsequent versions of
the model (see below), and its length, lz, based on experimental
measurements of the unpatterned apical mesenchyme [101], actu-
ally decreases as the limb grows longer.

A set of stationary solutions of Eq. (10) was provided for differ-
ent fixed values of lz during chicken fore limb development, where
lx and ly are essentially unchanged. The numbers of peaks (defined
by the sine wave solutions) in the x and y directions were shown to
be constrained by a dispersion relation, subject to a constant,
called the ‘‘Saunders number,’’ S.
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rl2
y

p2D
� S ¼ m2

x

ðlx=lyÞ2
þm2

y �
k2l2

y

p2 : ð13Þ

In this representation, the distance lz acts as a control param-
eter for transitions in the number of parallel elements (i.e., a sin-
gle stylopod, two zeugopodal elements, three digits), which
increases even though the distance ly is held constant. Because
of the nature of reaction–diffusion systems, as reflected in expres-
sion (13), an increase in ly, which occurs in other types of limbs
during development, would lead to a further increase in digit
number.

Hentschel et al. [43] extended the approach of Newman and
Frisch [83] by incorporating a representation of the positively aut-
oregulatory morphogen TGF-b in a system of partial differential
equations for skeletal patterning. Since TGF-b is a potent inducer
of fibronectin production (reviewed in Newman [78]), the system
also contained an expression for that effect, as well as for the slow
diffusion of mesenchymal cells and their positive haptotaxis up
gradients of fibronectin, where their density increase is identified
with precartilage condensation.

The cells of the developing avian and mouse limbs are region-
ally differentiated with respect to three functionally different
receptors for fibroblast growth factors (reviewed in [87]), which
are skeletally non-isomorphic morphogens produced by both the
AER (where FGFs are essential for its activity) and, to a lesser ex-
tent, the dorsal and ventral ectoderms [104].

Indeed, the four main types of precartilage mesenchymal cells
in the developing limb can be defined by their disjoint expression
of the three FGF receptors (FGFRs) [106]. Hentschel et al. [43] de-
noted the cells expressing FGFR1, FGFR2 and FGFR3, respectively,
by R1, R2 þ R02 and R3 (see Filion and Popel [30], for a reaction–
diffusion scheme also employing an FGF and its receptors). The
cells designated as R02 are a subset of those bearing FGFR2, but
at a slightly later stage, when they have begun to produce fibro-
nectin. In their model the authors presented equations for the
spatially and temporarily varying densities and dynamics of inter-
conversion of these different cell types. Based on evidence that
the cells that initially bear FGFR2 are the source of a laterally
acting inhibitor of precartilage condensation [72], the authors
also incorporated an equation for the dynamics of this uncharac-
terized inhibitor. The result was an eight-equation PDE system
representing the ‘‘core mechanism’’ of limb skeletal pattern
formation:

@c=@t ¼ Dr2c � kc þ Jðx; tÞ;
@ca=@t ¼ Dar2ca � kacica þ J1

aR1 þ JaðcaÞR2;

@ci=@t ¼ Dir2ci � kacica þ JiðcaÞR2;

@R1=@t ¼ Dcellr2R1 � vr � ðR1rqÞ þ rR1ðReq � RÞ
þ k21R2 � k12ðc; caÞR1;

@R2=@t ¼ Dcellr2R2 � vr � ðR2rqÞ þ rR2ðReq � RÞ
þ k12R1 � k21R2 � k22R2; ð14Þ

@R02=@t ¼ Dcellr2R02 � vr � ðR02rqÞ þ rR02ðReq � RÞ
þ k22R2 � k23R02;

@R3=@t ¼ r3R3ðReq � R3Þ þ k23R02;

@q=@t ¼ kbðR1 þ R2Þ þ k0bR02 � kcq:

In this scheme, c, ca, ci and q denote, respectively, the spatially
and temporarily varying concentrations of FGFs (produced by the
ectoderm), TGF-b (produced throughout the mesenchyme), a dif-
fusible inhibitor of chondrogenesis produced by R2 cells, and fibro-
nectin, produced by R02 cells. In addition, As noted, R1;R2;R

0
2 and R3

are densities of the different kinds of cells, but since FGFR3 is only
expressed by differentiated cartilage cells, which are immobile,

R ¼ R1 þ R2 þ R02 is the density of the mobile cells of the developing
limb. A schematic representation of the model of Hentschel et al.
[43] is shown in Fig. 4.

Hentschel and coworkers presented simulations based on a 2D
version of their model using biologically motivated simplifications
of the dynamics. The model remained a purely continuum one,
however, with distributions of the various cell types appearing as
density functions. Moreover, like the model of Newman and Frisch
[83] on which it was based, the simulations were confined to
obtaining stationary solutions of the morphogen and cell distribu-
tions in domains of fixed size representing the unpatterned portion
of the limb bud at successive stages of development.

These limitations have been overcome by adopting a hybrid dis-
crete-continuous computational approach to simulating the inter-
action of cells and morphogens in the developing limb. Izaguirre
et al. [47] and Cickovski et al. [17] introduced a multi-model
computational framework integrating continuous equations and

Fig. 4. Schematic representation of the biochemical genetic circuitry underlying the
pattern-forming instability described in the model of Hentschel et al. [43],
superimposed on a two-dimensional representation of the 5-day limb bud. The
colored rectangles represent the distribution of the densities of the cell types
designated in the model, defined by the expression of the various FGF receptors in
the different zones. The apical zone contains a high density of cells expressing
FGFR1 (green). In this zone, cell rearrangement is suppressed by the FGFs
emanating from the AER. The active zone is the site of the spatiotemporal
regulation of mesenchymal cell condensation. Pattern formation begins with the
establishment of populations of cells expressing FGF receptor 2 (red). The lower
part of the figure gives an enlarged version of part of this zone. The curved arrows
indicate the positively autoregulatory (i.e., TGF-b); the straight lines ending in
circles indicate the laterally acting inhibitor. When condensed cells leave the
proximal end of the active zone and enter the frozen zone they differentiate into
cartilage cells, which express FGFR3 (blue), and their spatiotemporal pattern
becomes fixed. At different stages of development the active zone will contain
different numbers of skeletal elements; eventually the frozen zone will encompass
the entire pattern. The length of the dorsoventral axis (normal to the plane of the
figure; see Fig. 1) is collapsed to zero in this simplified model. PD, proximodistal
axis; AP, anteroposterior axis (based on Hentschel et al. [43]; figure modified from
Forgacs and Newman [79]). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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discrete models. The framework consists of three main parts. The
Cellular Potts model [CPM; [40,37], describing cell and ECM behav-
ior, a reaction–diffusion PDE system describing the formation of
skeletal prepatterns in a growing domain, and an ODE model com-
prising gene regulatory networks (GRNs), the multistable station-
ary states of which represent differentiated cell types.

The CPM, the discrete, agent-based component of the frame-
work also referred to as the Glazier–Graner–Hogeweg model
[98], performs energy minimization calculations on generalized
cells, which can be actual cells or adjoining regions of the ECM,
represented in the model as simply-connected domains of pixels.
A contact energy EContact, defined between pairs of generalized cells,
describes the net adhesion/repulsion at their interface. An area
(2D) or volume (3D) energy, EVolume, penalizes the deviation of a cell
from its target value in the minimization calculation. The effective
energy E is a function of EContact and EVolume, as well as cell differen-
tiation and division, and responses to external chemical stimuli. E
contains true energies (e.g., cell–cell adhesion) and terms that mi-
mic energies (e.g., chemical fields modeling the cell’s response to
chemotactic and haptotactic gradients):

E ¼ EContact þ EVolume þ EChemical ð15Þ

and is minimized in the CPM in the dissipative limit using Metrop-
olis Monte Carlo dynamics [67].

Simulations of limb skeletal development were performed on a
2D plane by Izaguirre et al. [47] using as the reaction–diffusion
component the well-studied but ad hoc Schnakenberg 2-equation
PDE system [75], a simple two-state transition function between
nonaggregating and aggregating cells, responsive to threshold val-
ues of the presumed activating morphogen and, as in Newman and
Frisch [84], a succession of fixed spatial domains. Cickovski et al.
[17] improved on this by using a simplified version of the biologi-
cally motivated PDE system of Hentschel et al. [43], chemical fields
and response functions to represent both chemotaxis and hapto-
taxis of cells to elevated levels of fibronectin (produced in response
to elevated levels of activating morphogen (TGF-b), as specified in a
more elaborate cell-type transition map than that of [47], and the
dynamical establishment of the morphogenetically active zone by
a balance of cell multiplication and the inhibitory effect of a dis-
tally sourced inhibitory gradient (FGF) representing the AER. All

of this was computed on a 3D CPM grid (i.e., with the third, dorso-
ventral, dimension made explicit), where it produced an increasing
number of parallel elements in a proximodistal sequence, as in the
living embryo [17].

In contrast to Cickovski et al. [17], who modeled only ‘‘noncon-
densing’’ and ‘‘condensing’’ cells, Chaturvedi et al. [14] employed a
cell-state transition map using the full range of cell types in the
model of Hentschel et al. [43], R1, R2, R02 and R3. Another difference
between these two studies was that whereas Cickovski et al. [17]
permitted the width of the active zone to change in an emergent
fashion by incorporating the movement of proliferating cells away
from the high point of FGF at the AER, Chaturvedi et al. [14] chan-
ged the aspect ratio of the active zone by programmatic alteration
of the values of the morphogen diffusion coefficients. Successive
stationary patterns were then computed as in Newman and Frisch
[83].

Cickovski et al. [17] and Chaturvedi et al. [14] thus each incor-
porated realistic aspects of the biology into their respective mod-
els, but in the absence of relevant experimental data, and in
consideration of necessary simplifications for feasible 3D simula-
tions, some of the choices made were arbitrary and mutually
exclusive. Examples of these studies’ results are shown in Fig. 5.
Panel (A) shows a simulation from Chaturvedi et al. [14] of the ac-
tive zone TGF-b profile over successive times (vertical axis); panel
(B) shows three simulations of the cell density profiles (condensed
cells shown in gray) for successive times during limb development,
from Cickovski et al. [17],

While the model of Hentschel et al. [43] was based on available
cell biological and molecular genetic circuitry of the developing
limb, the finding of arithmetically increasing numbers of skeletal
elements seen in these two computational implementations is
mechanistically ‘‘underdetermined.’’ For example, similar patterns
and pattern transitions were seen in a model based on chemotaxis,
a mechanism not known at the time to be involved in mesenchy-
mal condensation (Myerscough et al. [76] however, see [60] for
evidence that chemotaxis operates during tooth bud formation).

In both Cickovski et al. [17] and Chaturvedi et al. [14] the elab-
orate ‘‘reactor-diffusion’’ dynamics of the full model of Hentschel
et al. [43] were reduced to a simpler form in different computa-
tionally convenient, but biologically and mathematically informal,

Fig. 5. Sequential generation of morphogen and condensation patterns in two multiscale 3D simulations of limb development based on the model of Hentschel et al. [43]. (A)
Time series of the concentration of the diffusible morphogen TGF-b displayed in cross-sections of the active zone (per [43]) of the chick limb at successive stages of
development, with time increasing in the upward direction [14]. (B) A three-dimensional simulation of mesenchymal cell distribution during chick limb development. Cells
that have undergone condensation are shown in gray [17]. Whereas the cell density was represented as a continuous variable in Hentschel et al. [43], both of these studies
employed the Cellular Potts Model [37] to represent cell position and motion (though only the morphogen profile is shown in (A)). In each study simulations were performed
using the CompuCell3D multimodel simulation framework (http://www.compucell3d.org/) (Panel A from Chaturvedi [13], Panel B, slightly modified from Cickovski et al. [17]
from Forgacs and [32]).
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ways. A preferable strategy for evaluating the validity of the model,
however, is to perform the reduction in a mathematically rigorous
fashion, using explicit biological idealizations. In this way, any
deficiencies in its predictions can be traced to known assumptions.
Alber et al. [1], in one of the few purely analytical mathematical re-
sults in this field, studied the conditions under which the full sys-
tem (Eq. (14)) was guaranteed to have smooth solutions that exist
globally in time. It was also shown by introducing arbitrarily small
diffusion of fibronectin, that the number of conditions necessary
for the global existence of smooth solutions can be significantly re-
duced. By itself, however, this analysis was not sufficient to charac-
terize the asymptotics of the long-time solutions determining the
system’s final patterns, or to identify the parameter set within
which biologically relevant simulations could be performed.

The main obstacle to applying the standard parabolic equations
approach was the presence of the terms proportional tor2q in the
equations for the moving cells. The change of variables introduced
in [33] was used and the contraction mapping theorem [31] was
applied for proving the existence of a solution for t e (0,T), with
T > 0 sufficiently small.

The full system in fact is ‘‘morphodynamic,’’ in the sense that
cell movement by haptotaxis occurs simultaneously with the gen-
eration of morphogen patterns and cell differentiation [95]. Under
the alternative but also biologically plausible ‘‘morphostatic’’
assumption [95], however, which postulates that the distribution
of the key morphogens and the induced cell differentiation pattern
relaxes faster than the evolution of the overall cell density, it be-
came possible to analytically extract from the full eight-equation
system a simplified two-equation subsystem governing the inter-
action of two of the key morphogens: the activator and an activa-
tor-dependent inhibitor of precartilage condensation formation
[2]. The reduced system has the form:

@ca
@t ¼ Dar2ca þ UðcaÞ � kacaci;

@ci
@t ¼ Dir2ci þ VðcaÞ � kacaci;

(
ð16Þ

The above equations incorporate diffusion and decay of mor-
phogens, along with the terms U(ca) and V(ca), which describe
the production of activator and inhibitor by the cells. These pro-
duction rates depend on the concentration ca of the activator itself.

The exact forms of these production terms U(ca) and V(ca) are as
follows

UðcaÞ ¼ ½J1
a þ JaðcaÞbðcaÞ�Req;

VðcaÞ ¼ JiðcaÞbðcaÞReq;
ð17Þ

where JaðcaÞ ¼ Ja maxðca=sÞn=½1þ ðca=sÞn�, JiðcaÞ ¼ Ji maxðca=dÞq=½1þ
ðca=dÞq�; and bðcaÞ ¼ b1ca=ðb2 þ caÞ. J1

a and the Michaelis–Menten
type functions JaðcaÞ;bðcaÞ; and JiðcaÞ are the rates at which the var-
ious cell types release TGF-b and the inhibitor, and these cells have
a same equilibrium density Req (see [43]). The system is subject to
no-flux boundary conditions and zero initial concentrations for ca

and ci.
The reaction kinetic parameters k and d appear in the produc-

tion rates of activator and inhibitor morphogens and their values
dramatically affect the generated patterns. In the model k describes
the feedback strength of the activator morphogen, and d denotes
the activator morphogen concentration which separates the linear
response phase from the saturation response phase [2]. Biologi-
cally, these parameters are proposed to be related to the distribu-
tions of Hox gene products in the apical zone at the different
phases of limb development [77], with the rationale that Hox pro-
teins are transcription factors that regulate the levels of develop-
mentally important signals such as the activating and inhibitory
morphogens [105].

The full model of Hentschel et al. [43] contains expressions for
activating and inhibitory morphogens and their interactions with

cells (which are reduced to Eqs. (16) and (17) under the morpho-
static assumption). Also, by the evolution of the distribution of
the AER morphogen FGF (concentration denoted by c) and the
dependency of the density of R1 precartilage mesenchymal cells
on this factor, the resulting patterns are caused to develop in a pro-
gressive spatiotemporal direction, as in the actual limb. In addition
to this polarity of growth, and the transitions in element number
induced by the AER-regulated change in the aspect ratio of the LALI
zone, as with any reaction–diffusion-type system the shape and
boundary values of the relevant domain will affect the details of
the patterns generated. Two aspects of limb development that have
generally been subjects of separate mathematical modeling efforts
– limb bud shaping and skeletogenesis (see above) – are thus inter-
related and should eventually be incorporated into unified models.

Recently, a moving grid discontinuous Galerkin (DG) finite ele-
ment method was introduced for modeling skeletal pattern forma-
tion in the vertebrate limb [127,128]. The DG method provides
means for converting an ordinary or partial differential equation
system into a problem represented by a system of algebraic equa-
tions in a more restricted space than that of the original system. It
employs ‘‘independent’’ polynomials on every element to approxi-
mate the system’s behavior in the restricted space and provides
more flexibility than the continuous Galerkin finite element meth-
od. This method enables numerical solutions of reaction–diffusion
systems on deforming and moving grids in domains with compli-
cated geometries and moving boundaries (see Madzvamuse et al.
[59] for an allied approach). To approximate the irregular geome-
tries of limb buds, the cubic spline interpolation technique [19]
was used in [127,128]. This method approximates the curved
boundary of a limb bud by piece-wise cubic polynomials and main-
tains global smoothness of the obtained spline curve.

Based on the earlier-described proposed mechanism for spatio-
temporal skeletal pattern formation [43,80], reaction and diffusion
of morphogens occurs in the LALI zone, the activator morphogen
induces pattern elements in the active zone (the proximal portion
of the LALI zone), and these elements become consolidated in the
frozen zone. As the frozen zone grows, the LALI zone’s width
shrinks and its shape deforms. The LALI zone, which is denoted
by XðtÞ, resides at the distal tip of the developing limb. Because
the morphogen system denoted by Eqs. (16) and (17) is defined
on a moving domain, XðtÞ, all spatial variables ðx; yÞ are functions
of time, t. By the Reynolds transport theorem [52], the system
(16) on a moving domain will be

Dca
Dt þ car �~a ¼ Dar2ca þ UðcaÞ � kacaci;

Dci
Dt þ cir �~a ¼ Dir2ci þ Vðca � kacaciÞ;

(
ð18Þ

where D
Dt ¼ @

@t þ~a � r
� �

is the material derivative, and

~aðxðtÞ; yðtÞ; tÞ ¼ dxðtÞ=dt
dyðtÞ=dt

� �
is the velocity of a spatial point

ðxðtÞ; yðtÞÞ in the moving LALI zone XðtÞ.
The moving velocity ~aðxðtÞ; yðtÞ; tÞ of the LALI zone is deter-

mined by the aspect ratio of the LALI zone at different stages,
which determines the number of parallel elements generated by
the reaction–diffusion model [83,43,128]. Since the natural shape
of a developing limb is nonstandard, the discontinuous Galerkin fi-
nite element method [127,128] was used to describe the compli-
cated geometries and solve the system (18) on the moving
domain XðtÞ numerically.

The core chondrogenic mechanism of the developing limb in the
presence of an FGF gradient was simulated using the computa-
tional model described above, which permits simulation of LALI
systems in domains of varying size and shape. The model predicts
the normal proximodistal pattern of skeletogenesis as well as distal
truncations resulting from AER removal [96] (Fig. 6), and a variety
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of limb bud-deforming mutations and other conditions (Zhu et al.
[128,129]).

A biologically valid model of limb skeletogenesis should not
only be capable of simulating the limbs of present-day animals,
but also provide a mechanistic rationale for the appearance of a
limb-type skeletal pattern at the fin-limb transition at the origin
of the tetrapods [44]. Zhu et al. [129] thus sought to test whether
their model, with adjusted kinetic parameters and limb bud con-
tours, but conserved regulatory network topology and AP FGF gra-
dient dynamics and emergent zone assignments, could reproduce
the features of fossil limb skeletons, including some from extinct
fish-like ancestors and ichthyosaurs, i.e., swimming dinosaurs.
Since the embryology is unknown for the extinct species, the
authors designed a range of hypothetical developmental scenarios.
The simulation end-points shown alongside drawings of fossil
limbs in Fig. 7 indicate that their model exhibits sufficient flexibil-
ity to reproduce the general features of limb skeletons of a variety
of pre-tetrapods (such as the lobe-finned fish Tiktaalik; [99]) with
limb-like appendages.

3.4. Relevance of morphodynamic effects

Computational tractability of the LALI-type models described
above have typically involved making the morphostatic assump-
tion that pattern formation is mechanistically separated from cell
movement. A more authentic treatment, however, would be mor-
phodynamic, as in Hentschel et al. [43], where the cellular ‘‘reac-
tors’’ that generate the morphogens and extracellular molecules
which mediate cell condensation undergo rearrangement simulta-
neously with (and in reaction to) their production of these agents.
For small, local cell translocations the full morphodynamic process
may yield the same results as the idealized morphostatic one, but
as seen in the work of Salazar-Ciudad and Jernvall on the position-

ing of tooth cusps, morphodynamic effects can have dramatic con-
sequences for developmental and evolutionary change [93,94].

After the appearance of the reaction–diffusion model of New-
man and Frisch [83], Oster and coworkers adapted the LALI formal-
ism to a mechanical interpretation in which pattern formation and
morphogenesis (i.e., mesenchymal condensation) were reflections
of a single process, the contraction of the intercellular matrix by
mechanical stresses exerted locally by the cells themselves. A pat-
terned (as opposed to global) contraction was effected in their
model by invoking elastic attenuation by ECM away from the cen-
ters of contraction. They analogized their mechanism to a reac-
tion–diffusion process, in which contraction was proposed to
play the role of a short-range activator, and elastic attenuation that
of a long-range inhibitor [88].

Although this model thus featured a pattern-forming mecha-
nism of which cell movement was an intrinsic component, several
observations tended to disconfirm it. One was the recognition that
in contrast to fibrous collagen ECMs (e.g., [100], the amorphous
hyaluronan–glycoprotein matrix of the limb mesenchyme cannot
sustain the cell traction-dependent deformations required by the
model of Oster et al. [88]. Moreover, in vivo evidence indicated that
the limb skeletal pattern was set well before condensation of the
skeletal primordia occurred [120].

Recent work, however, has revived consideration of patterning
mechanisms that depend on cell movement. A study of the role
of the multifunctional galectin proteins in chick limb development
[8], discussed in Section 2, above), identified an early stage of skel-
etal development in which ‘‘protocondensations’’ are mediated by
CG-1A, a galectin that acts as both a morphogen and a matricellular
adhesion protein. The regulatory network formed by CG-1A and its
modulatory partner CG-8 constitute a LALI-type system with dis-
tinct morphodynamic properties. In particular, a PDE model adher-
ing closely to the cell-molecular interactions identified in Bhat

Fig. 6. Simulations of AER removal with the model of Zhu et al. [129] (Left two columns). Drawings of AER removal experiments, based on Saunders [97]. The top images
show an intact chicken wing bud at an early stage of development and the limb skeleton that it generates. The middle images show a wing bud at the same early stage with
the AER removed, and the resulting limb skeleton, which attains a normal size but is truncated beginning at the elbow. The bottom images show a later-stage wing bud the
AER of which has been removed. The resulting skeleton is truncated from the wrist onward. (Right column): Top: AER (e.g., suppressive morphogen source) left intact; normal
development results. Middle: AER deleted early during the simulation. Bottom: AER deleted later during the simulation. The same parameters were used in all three
simulations and all simulated limbs were allowed to develop for the same time (from Zhu et al. [129]).
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et al. [8] readily produces periodically patterned skeletal primordia
only when a cell flux term is included in the system of equations (T.
Glimm, personal communication).

3.5. Heuristic models relating to the LALI framework for skeletogenesis

A series of special-purpose models have been presented over
the past decade and a half that while not attempting to represent
the development of the limb skeleton in anything like its multi-
scale complexity, are instead directed toward testing the suffi-
ciency of the LALI framework for skeletal pattern formation. In
some cases the simplification was in the experimental system
modeled, allowing for simulation of detailed cellular behaviors
and quantitative comparisons with broad ranges of experimental
variability. On other cases highly simplified reaction–diffusion
models have been used to assess their generic capacity to account
for some puzzling genetics-based variations of the limb skeleton.

In the category of simpler experimental settings, Miura and Shi-
ota [70] prepared planar ‘‘micromass’’ cultures of limb bud mesen-
chyme. In this in vitro system, patterns of precartilage
condensations form and cartilage nodules differentiate with a
time-course and on a spatial scale similar to that in the embryo
[54,27]. Miura and Shiota grew their cultures within collagen or
agarose gels of different densities and found that the condensation
pattern became less coarse with increased gel density. Using a
computational model that implemented the assumptions of a reac-
tion–diffusion mechanism, a cell sorting mechanism based on dif-
ferential adhesion, and the cell traction model of Oster et al. [88],

they determined that the experimental data were consistent with
the first two mechanisms, but not the third.

Later, a multiscale, stochastic, discrete approach was used to
model chondrogenic pattern formation in the micromass system
[48,16]. Both models were calibrated using experimentally deter-
mined or biologically plausible data on rates of cell and activator
and inhibitor morphogen movement. In Kiskowski et al. [48], cells
and the molecules they produce (with formal properties of a posi-
tively autoregulatory activator, an inhibitor, and fibronectin-type
ECM) were modeled as mobile single-pixel agents that imple-
mented rules concerning production and response to the mole-
cules (also represented as single pixels). The importance of
lateral inhibition for achieving authentic condensation pattern sta-
tistics was exemplified in this study: when the strength of this
branch of the core cell-molecular regulatory was attenuated the
regularity of the pattern was correspondingly degraded.

In Christley et al. [16], cell and molecular dynamics were simu-
lated on distinct spatial and temporal scales with cells represented
as spatially extended multipixel objects that could change their
shape. Simulation results indicated that cells can form condensa-
tion patterns by undergoing small displacements of less than a cell
diameter, packing more closely at sites of ECM accumulation by
changing their shapes, while maintaining a relatively uniform cell
density across the entire spatial domain. In both [48] and [16] re-
gions of parameter were identified in which both condensation
size and spacing fell within the envelope of experimentally deter-
mined values.

The simulations in Christley et al. [16] disclosed two distinct
dynamical regimes for pattern self-organization involving tran-

Fig. 7. Simulation of fossil limb skeletons with the model of Zhu et al. [129]. Hypothetical developmental scenarios were used, as described in the text and the original paper.
The end-stages of the simulations of the ichthyosaur Brachypterygius, two lobe-finned fish, Sauripterus and Eusthenopteron, and two forms that are transitional between those
organisms and amphibians, Panderichthys and Tiktaalik, are shown on the right. See Zhu et al. [129] for the sources of the fossil drawings and details of the simulations.
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sient or stationary inductive patterns of morphogens. In the tran-
sient regime patterns of activator and inhibitor morphogen con-
centrations appeared for a brief period of time after which the
patterns degraded. In the stationary regime a spatial pattern of
morphogen concentrations formed that remained stable over time.
Sensitivity analysis of key parameters indicated robustness in pat-
tern formation behavior with some realistic variation in the mor-
phological outcomes. For example, formation of both spots and
stripes of precartilage condensation (as seen in the cultures) could
be produced by the model under slightly different parameter
choices.

As noted above (Section 2), FGF family morphogens not only
suppress pattern formation distally in the intact limb, but also
act as modulators of the presumed reaction–diffusion network
by, for example, eliciting a lateral inhibitor of condensation in cells
that bear the FGFR2 receptor [72]. Drawing on observations from
the micromass culture system, Miura and Maini [68] investigated
the effect of FGF4 on the speed of the emergence of the condensa-
tion pattern. They showed analytically, and confirmed by numeri-
cal simulations, that the rate of pattern emergence can change
abruptly with small parameter changes if the system is governed
by a diffusion-driven instability. Representing the system in terms
of the Gierer–Meinhardt reaction–diffusion model indicated that a
change in a single parameter can in principle explain two experi-
mentally determined effects of FGF on limb mesenchyme cells:

reinforcement of lateral inhibition and earlier appearance of
pattern.

In the category of highly schematic models of features of the in-
tact limb, Miura et al. [71] studied the digital pattern in Doublefoot
(Dbf) mutant mice, which have supernumerary digits due to over-
expansion of the limb bud. In this mouse strain thin digits exist in
the proximal part of the hand or foot, which sometimes become
normal abruptly in the distal part, an effect difficult to explain in
the positional information (PI) framework. By numerical simula-
tion of the simplest possible Turing-type reaction–diffusion model
on a growing domain, they found that exactly the same ‘‘mixed-
mode’’ patterning behavior was reproduced. They then analytically
related this pattern outcome to the saturation of activator kinetics
in the model. Their analysis led to the prediction that the inverse of
the typical Dbf pattern, i.e., thin proximodistal channels within
thick digits, was also consistent with the reaction–diffusion mech-
anism, and they in fact found an example of this among their mu-
tant embryos.

In another example of the application of simplified models,
Glimm et al. [39], sought to understand the patterning effects of
modulating the reaction parameters of a Turing-type system by a
graded modifier orthogonal to the standing wave solution. This,
of course, potentially represents the effect of Shh emanating from
the ZPA under the assumption that the digits are patterned by a
reaction–diffusion process. Using a generalized representation of

Fig. 8. Mechanism by which the loss of a middle finger can occur in the heuristic model of limb development of Glimm et al. [39]. As the external morphogen gradient
becomes less steep, the local activator concentration at the second peak falls below the threshold concentration. The panels on the left show schematic plots of the
corresponding spatially dependent kinetics terms. In the center panels, the corresponding steady state activator concentrations are shown. The right-hand side shows the
patterns induced in those regions where the activator concentration is above the threshold. Thus, the dark bars represent precartilage condensations, the precursors to the
digits. While all five digits appear in the first four rows (with variations in thickness resulting from the effect of the orthogonal modifying gradient), in the fifth row there are
only four digits; a middle digit is ‘‘lost’’ (i.e., fails to form). In the panels on the right, the horizontal direction is the anteroposterior axis, and the vertical direction
proximodistal axis (from Glimm et al. [39]).
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a reaction–diffusion system as well as the specific case of the
Schnakenberg equations [75], the authors present both analytical
and numerical results demonstrating the subtle and often counter-
intuitive effects of modulatory gradients on Turing patterns
(Fig. 8). Examples of anomalies in limb development such as the
loss of a middle finger in mouse embryos that were genetically
modified such that a shallower Shh gradient was present in the
limb buds [42], the formation of an ectopic digit posterior to mouse
digit V when the Hedgehog signaling pathway was abrogated in
the limb ectoderm [12], and the fusion of digits seen in human Tri-
phalangeal thumb-polysyndactyly syndrome, in which a limb-spe-
cific enhancer of Shh expression is duplicated [103,116,49], all of
which are difficult to reconcile with the PI model, prove to be con-
sistent with the results of the analysis gradient-Turing mechanism
interactions.

4. Conclusions and discussion

In this review we have described a variety of mathematical
modeling approaches to the study of vertebrate limb development.
These include models focusing on outgrowth and shaping of the
limb bud, models concerned with the establishment of morphogen
gradients such as FGF and Shh that are non-isomorphic to the skel-
etal pattern, several of which control outgrowth and shaping and
some of which modulate the details of the skeletal elements, and
models concerned with the generation and arrangement of the
skeleton itself.

The relevant biological mechanisms operate at a variety of tem-
poral and spatial scales and involve cell–cell signaling, gene
expression regulation, including cell-type transitions, cell move-
ment, and viscoelastic behavior of both epithelial and mesenchy-
mal tissues. Modeling this broad range of biological processes
has required a correspondingly rich set of mathematical tech-
niques, among which are continuum approaches, immersed
boundary and finite element methods, discrete methods such as
cellular automata and stochastic systems, and partial differential
equations. The limb thus constitutes one of the most comprehen-
sive systems for experiment-based modeling in the field of devel-
opmental biology.

In addition to the insights mathematical modeling has brought
to the understanding of vertebrate limb development, the prob-
lems raised by this system have also stimulated the generation of
new modeling strategies. Specifically, the limb problem motivated
what may have been the first biological application of Turing-type
reaction–diffusion system in which experimental data on cell and
molecular properties and tissue dimensions were taken into con-
sideration, as well as sensitivity of pattern properties to the chang-
ing size of a small (i.e., wavelength-comparable) domain [83].
CompuCell and CompuCell3D (http://www.compucell3d.org/), ver-
satile and widely used multiscale simulation environments incor-
porating the Cellular Potts model (CPM) [37,98] for cell and ECM
behavior, along with reaction–diffusion equations for morphogen
dynamics and cell transition dynamics via ordinary differential
equations, were first tested on the limb [47,17,14]. Such multiscale
approaches, coupling discrete stochastic and deterministic contin-
uous submodels, are increasingly seen as crucial to new hypothesis
generation based on large data sets, and have been invaluable in
other areas of developmental biology [96], and in cell biological
and multicellular problems [15,3,4] including blood clot formation
[123] and cancer [20].

The problem of limb development, furthermore, motivated
what may have been the first detailed mathematical investigation
of the analytical properties of an experimentally based multidi-
mensional set of coupled reaction–diffusion equations for a devel-
opmental process [1], and the formulation of a new discontinuous

Galerkin moving grid approach grids for the finite element model-
ing of reaction–diffusion systems [127].

Several unresolved questions concerning limb morphogenesis
and pattern formation continue to be under active investigation
and are likely to yield to combined experimental, mathematical
and computational approaches in the coming years. These include
the relation of Hox gene activity to the core reaction–diffusion
mechanism of skeletogenesis (J. Sharpe, personal communication),
the development of a realistic morphodynamic (sensu [94]) model
incorporating cell flux to represent the newly identified dynamics
of early ‘‘protocondensation’’ formation in the embryonic limb [8]
(T. Glimm, personal communication), and the reconciliation of the
variously proposed oriented cell and tissue rearrangements that
drive limb bud outgrowth [46].

The model by Boehm et al. [9] has taken the use of quantitative
measurements to inform models and establish causal mechanisms
for the generation of limb bud outgrowth and shape to an unprec-
edented level. Although the complexity of the core skeletal pat-
terning process and the abundance of molecular components
involved in the molding of individual skeletal elements will prob-
ably preclude analysis of these mechanisms at a similar level of
resolution in the near term, its possibility is a motivating ideal.
In the meantime, phenomenological and heuristic models, and
those that simulate simplified experimental systems such as pat-
tern formation in the micromass cell culture system will continue
to contribute to the overall picture. The success of multidisciplin-
ary, multiscale strategies over the last several decades in building
a coherent understanding of limb development provides encour-
agement regarding the next phase of this research.
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