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Abstract. Skeletal patterning in the vertebrate limb, i.e., the spatiotemporal regulation of cartilage
differentiation (chondrogenesis) during embryogenesis and regeneration, is one of the best studied
examples of a multicellular developmental process. Recently [Alber et al., The morphostatic limit
for a model of skeletal pattern formation in the vertebrate limb, Bulletin of Mathematical Biology,
2008, v70, pp. 460-483], a simplified two-equation reaction-diffusion system was developed to
describe the interaction of two of the key morphogens: the activator and an activator-dependent
inhibitor of precartilage condensation formation. A discontinuous Galerkin (DG) finite element
method was applied to solve this nonlinear system on complex domains to study the effects of
domain geometry on the pattern generated [Zhu et al., Application of Discontinuous Galerkin
Methods for reaction-diffusion systems in developmental biology, Journal of Scientific Computing,
2009, v40, pp. 391-418]. In this paper, we extend these previous results and develop a DG finite
element model in a moving and deforming domain for skeletal pattern formation in the vertebrate
limb. Simulations reflect the actual dynamics of limb development and indicate the important role
played by the geometry of the undifferentiated apical zone.
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1. Introduction
Skeletal patterning in the vertebrate limb, i.e., the spatiotemporal regulation of cartilage differ-
entiation (chondrogenesis) during embryogenesis and regeneration, is one of the best studied ex-
amples of multicellular organogenesis [22, 15]. Limb morphogenesis involves subcellular, cellu-
lar and supracellular components that interact in a reliable fashion to produce functional skeletal
structures. Since many of the components and interactions are also typical of other embryonic
processes, understanding this phenomenon can provide insights into a variety of morphogenetic
events in early development.

The limb skeleton consists of nodules and rods of cartilage (later replaced by bone), arranged
in tandem and parallel arrays [16, 17]. It thus lends itself to being modeled by reaction-diffusion
systems, which readily generate spot- and stripe-like patterns.

The most detailed model for vertebrate limb development presented thus far is that of [7],
in which a system of eight PDEs was constructed largely on the basis of experimentally deter-
mined cellular-molecular interactions occurring in the avian and mouse limb bud. The full system
has smooth solutions that exist globally in time [1] but is difficult to handle mathematically and
computationally. The chemotaxis terms in the full system could cause instabilities in the numer-
ical implementation. In particular, it is rather hard to characterize attracting stationary solutions.
Moreover, biologically relevant simulations would involve a large number of experimentally jus-
tified parameters, which are often known only approximately. Recently in [2], by analytically
implementing the assumption that cell differentiation relaxes faster than the evolution of the over-
all cell density, a simplified two-equation system was extracted from the eight-equation system
governing the interaction of two of the key morphogens: the activator and an activator-dependent
inhibitor of precartilage condensation formation. The reduced reaction-diffusion system has the
form

∂Ca

∂t
= Da∇2Ca + U(Ca)− kaCaCi; (1.1)

∂Ci

∂t
= Di∇2Ci + V (Ca)− kaCaCi, (1.2)

where Ca denotes the concentration of the activator TGF-β, Ci the concentration of the inhibitor,
Da and Di the diffusion constants for the activator and the inhibitor respectively, ka the inhibitor-
activator binding rate, U and V the production rates of Ca and Ci, respectively. The system is
subject to no-flux boundary conditions and zero initial concentrations for Ca and Ci. The functions
U and V are given by

U(Ca) = [J1
aα(Ca) + Ja(Ca)β(Ca)]Req,

V (Ca) = Ji(Ca)β(Ca)Req,

(1.3)

where Ja(Ca) = Jamax(Ca/s)
n/[1+(Ca/s)

n], Ji(Ca) = Jimax(Ca/δ)
q/[1+(Ca/δ)

q], and β(Ca) =
β1Ca/(β2 + Ca). Following [2], the parameter values in the system are taken as Da = 1, Di =
100.3, Jamax = 6.0λ, Jimax = 8.0λ, s = 4.0, ka = λ, J1

aα(Ca) = 0.05λ, β1 = 0.693473, β2 =
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2.66294, Req = 2.0, n = q = 2. The values of the factors λ, δ can dramatically affect the pattern
as shown in [29] and Section 3 of this paper.

Recently we developed an operator splitting discontinuous Galerkin (DG) finite element method
to numerically solve the nonlinear system (1.1)-(1.2) on variable domains to study the effects of
domain geometry on the pattern generated [29]. The method is based on a new DG method for
solving time dependent PDEs with higher order spatial derivatives, developed by Cheng and Shu
[3]. These investigators formulated the scheme by repeated integration by parts of the original
equation and then replacing the interface values of the solution by carefully chosen numerical
fluxes. In contrast to the local discontinuous Galerkin (LDG) method [27, 28, 10, 23, 24, 25, 26],
this new DG method can be applied without introducing any auxiliary variables or rewriting the
original equation in the form of a larger system, hence it is easier to formulate and implement, has
a smaller effective stencil, and may reduce storage and computational cost

In this paper, we extend previous results and develop a moving grid DG finite element model
on a moving and deforming domain for modeling skeletal pattern formation in the vertebrate limb.
We note that an alternative way to solve reaction-diffusion systems on a moving domain with
complicated geometry is to use continuous Galerkin (CG) finite element methods [11, 12, 13].
CG and DG methods each have their own advantages. CG methods have fewer degrees of free-
dom, especially for high spatial dimensional problems. DG methods can easily handle adaptivity
strategies since refinement or coarsening of the grid can be achieved without taking into account
the continuity restrictions typical of conforming finite element methods. Moreover, the degree of
the approximating polynomial can be easily changed from one element to the other, and the use
of general meshes with hanging nodes is allowed [4], for example there may be more than three
neighbors for a triangular element. For a problem with strong hyperbolic property, such as on a
fast moving domain or a convection dominated problem, DG methods can naturally incorporate the
upwind numerical flux into the numerical scheme like that in the finite volume technique, to ensure
the numerical stability of the computation [5]. Simulations by our DG methods in this paper re-
flect the authentic dynamics of limb development and the important role played by the geometry of
the limb’s undifferentiated apical zone in which local autoactivation-lateral inhibitory interactions
occur (‘LALI zone’).

2. A DG finite element model on moving grids
The system (1.1)-(1.2) for limb development belongs to the class of reaction-diffusion systems of
two chemical species. On a fixed domain, they can be written in the general form

∂u

∂t
= D∇2u + F (u), (2.1)

where u ∈ R2 represent concentrations of molecular species, D ∈ R2×2 is the diffusion constant
matrix and it is diagonal, ∇2u is the Laplacian associated with the diffusion of the molecules u,
and F (u) describes the biochemical reactions.
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To model vertebrate limb development, we consider system (2.1) on a moving domain. Let
Ω(t) = {(x(t), y(t))} be an open, bounded, and time-dependent domain on which the reaction-
diffusion system (2.1) is defined, where (x(t), y(t)) is a point in the domain. We triangulate
Ω(t) by Ωh(t) which consists of time-dependent non-overlapping triangles {4m(t)}N

m=1. Let
hmin(t) = min1≤m≤N ρm(t), where ρm(t) is the diameter of the inscribed circle of the triangle
4m(t), and {(xi(t), yi(t))}M

i=1 denote the grid points of Ωh(t). All spatial variables are functions
of the temporal variable.

2.1. Reaction-diffusion system on a moving domain
On a moving domain, by the Reynolds transport theorem [9], system (2.1) can be extended to

Du

Dt
+ u∇ · ~a = D∇2u + F (u), (2.2)

where Du
Dt

is the material derivative of chemical species u, i.e.,

Du

Dt
=

∂u

∂t
+ ~a · ∇u, (2.3)

and

~a(x(t), y(t), t) = (
dx(t)

dt
,
dy(t)

dt
)T

is the velocity of a spatial point (x(t), y(t)) in the moving domain.

2.2. The DG spatial discretization on moving grids
Define the time-dependent finite element space V k

h (t) = {v : v|4m(t) ∈ P k(4m(t)),m =
1, · · · , N}, where P k(4m(t)) denotes the set of all polynomials of degree at most k on 4m(t).

As in [29], we formally apply the DG formulation [3] to discretize the reaction-diffusion equa-
tions (2.2) in the spatial dimensions, but keep the time variable continuous. The difference from
[29] is that now the finite element space is time-dependent since we are solving the problem on a
moving domain. We characterize the semi-discrete scheme as: find u ∈ V k

h (t), such that
∫

4m(t)

Du

Dt
vdx +

∫

4m(t)

u∇ · ~avdx−D

∫

4m(t)

u∇2vdx

+D

∫

∂4m(t)

û∇v · ~n∂4m(t)dS −D

∫

∂4m(t)

v∇̃u · ~n∂4m(t)dS

=

∫

4m(t)

F (u)vdx

(2.4)

holds true for any v ∈ V k
h (t) and m = 1, · · · , N . The numerical fluxes on the element edges

∂4m(t) are chosen as

û =
uin + uext

2
, (2.5)
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∇̃u =
(∇u)in + (∇u)ext

2
+ β[u], (2.6)

where the jump term
[u] = (uext − uin)|∂4m(t) · ~n∂4m(t), (2.7)

uin and uext are the limits of u at x ∈ ∂4m(t) taken from the interior and the exterior of 4m(t)
respectively, ~n∂4m(t) is the outward unit normal to the element 4m(t) at x ∈ ∂4m(t), and β is
a positive quantity that is of the order O(h−1

min(t)). Following [3], we take β = 10/hmin(t). The
choice of numerical fluxes (2.5)-(2.7) is crucial for the stability and convergence of the DG scheme
(2.4). See [6, 3] for further discussion of the choice of numerical fluxes.

Following [29], we use the Strang type second-order symmetrical operator splitting schemes
[19, 8] to avoid solving the completely coupled nonlinear system from the fully implicit temporal
discretization and overcome the computational challenge from the stiffness of reaction-diffusion
equations (2.2) and the DG spatial discretization operator. We consider the P 1 case in this paper
such that the order of accuracy in the spatial direction corresponds to the splitting error order in
the temporal direction, and they are both 2.

As a straightforward example, we describe the detailed numerical formulae for the scalar case
of (2.4). The corresponding system case can be solved component by component using similar
formulae. For each element 4m(t), denote its three neighboring elements by im, jm, and km. To
simplify notations in the following presentation, we will omit the subscript m and just use i, j, k
to represent the neighboring cells of 4m(t). Since limb development is accompanied by moderate
growth, the apical zone of the limb bud does not deform rapidly. Hence in this computational
model the mesh movement is controlled such that there is no degenerate element formed during
movement of the domain. Therefore the neighboring elements of each element do not merge and
the indexes i, j, k for neighboring elements are time-independent. The linear polynomial on4m(t)
is represented by

u(x, y, t) = am(t) + bm(t)ξm(x(t), y(t), t) + cm(t)ηm(x(t), y(t), t), (2.8)

where ξm and ηm are time-dependent local basis functions on 4m(t)

ξm(x(t), y(t), t) =
x(t)− xm(t)

hm(t)
, (2.9)

ηm(x(t), y(t), t) =
y(t)− ym(t)

hm(t)
, (2.10)

and (xm(t), ym(t)) is the barycenter of the element 4m(t), hm(t) =
√
|∆m(t)| with |∆m(t)| de-

noting the area of 4m(t). The movement of 4m(t) and the whole mesh Ωh(t) are pre-determined
by the development of the LALI zone of limb bud.

By taking v = 1, ξm, ηm on4m(t) and v = 0 elsewhere, the DG formulation (2.4) is converted

135



J. Zhu et al. FE model for limb pattern formation

from the integral form to the following system, for m = 1, · · · , N :

p11(t)a
′
m(t) + p12(t)b

′
m(t) + p13(t)c

′
m(t)+

q11(t)am(t) + q12(t)bm(t) + q13(t)cm(t)+

k11(t)am(t) + k12(t)bm(t) + k13(t)cm(t) =

D{wam1(t)am(t) + wbm1(t)bm(t) + wcm1(t)cm(t)+∑

l=i,j,k

[wal1(t)al(t) + wbl1(t)bl(t) + wcl1(t)cl(t)]}+

(p11(t)/3)
∑

l=i,j,k

F (u(xm,l(t), ym,l(t))),

(2.11)

p21(t)a
′
m(t) + p22(t)b

′
m(t) + p23(t)c

′
m(t)+

q21(t)am(t) + q22(t)bm(t) + q23(t)cm(t)+

k21(t)am(t) + k22(t)bm(t) + k23(t)cm(t) =

D{wam2(t)am(t) + wbm2(t)bm(t) + wcm2(t)cm(t)+∑

l=i,j,k

[wal2(t)al(t) + wbl2(t)bl(t) + wcl2(t)cl(t)]}+

(p11(t)/3)
∑

l=i,j,k

F (u(xm,l(t), ym,l(t)))ξm(xm,l(t), ym,l(t), t),

(2.12)

p31(t)a
′
m(t) + p32(t)b

′
m(t) + p33(t)c

′
m(t)+

q31(t)am(t) + q32(t)bm(t) + q33(t)cm(t)+

k31(t)am(t) + k32(t)bm(t) + k33(t)cm(t) =

D{wam3(t)am(t) + wbm3(t)bm(t) + wcm3(t)cm(t)+∑

l=i,j,k

[wal3(t)al(t) + wbl3(t)bl(t) + wcl3(t)cl(t)]}+

(p11(t)/3)
∑

l=i,j,k

F (u(xm,l(t), ym,l(t)))ηm(xm,l(t), ym,l(t), t),

(2.13)

where the coefficients {prs}3
r,s=1, {qrs}3

r,s=1, {krs}3
r,s=1, {{walr}3

r=1, {wblr}3
r=1, {wclr}3

r=1}l=m,i,j,k

depend on the local geometry of the mesh (i.e., triangle 4m(t) and its neighboring cells i, j, k and
~n∂4m(t)), the local basis functions 1, {ξl(x, y, t), ηl(x, y, t)}l=m,i,j,k, and β. {xm,l(t), ym,l(t)}l=i,j,k

are the mid-points of the three edges {el}l=i,j,k of 4m(t) which serve as Gaussian quadrature
points for the integral involving the nonlinear reaction terms in (2.4). The detailed formulae for
computing these coefficients are presented in the Appendix.

We rewrite equations (2.11)-(2.13) to the matrix-vector form

Pm(t)~V ′
m(t) + Qm(t)~Vm(t) + Km(t)~Vm(t) = D

∑

l=m,i,j,k

Wl(t)~Vl(t) + ~Fm(~Vm(t)). (2.14)
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where

~Vm(t) =




am(t)
bm(t)
cm(t)


 , ~Vl(t) =




al(t)
bl(t)
cl(t)


 , Pm(t) =




p11(t) p12(t) p13(t)
p21(t) p22(t) p23(t)
p31(t) p32(t) p33(t)


 ,

Qm(t) =




q11(t) q12(t) q13(t)
q21(t) q22(t) q23(t)
q31(t) q32(t) q33(t)


 , Km(t) =




k11(t) k12(t) k13(t)
k21(t) k22(t) k23(t)
k31(t) k32(t) k33(t)


 ,

Wl(t) =




wal1(t) wbl1(t) wcl3(t)
wal2(t) wbl2(t) wcl2(t)
wal3(t) wbl3(t) wcl3(t)


 ,

~Fm(~Vm(t)) = p11(t)/3




∑
l=i,j,k F (u(xm,l(t), ym,l(t)))∑

l=i,j,k F (u(xm,l(t), ym,l(t)))ξm(xm,l(t), ym,l(t), t)∑
l=i,j,k F (u(xm,l(t), ym,l(t)))ηm(xm,l(t), ym,l(t), t)


 .

Finally we have the ODE system resulting from the DG spatial discretization:

~V ′
m(t) = Pm(t)−1

[
(DWm(t)−Qm(t)−Km(t))~Vm(t) + D

∑

l=i,j,k

Wl(t)~Vl(t)

]

+ Pm(t)−1 ~Fm(~Vm(t)).

(2.15)

2.3. Temporal discretization
The ODE (2.15) has a linear term resulting from the diffusion and domain movement and a non-
linear term coming from the reaction expression in (2.2). Both of these terms can cause stiffness in
the reaction-diffusion system and present challenges for temporal discretization schemes. Hence
we need to use fully implicit schemes to solve (2.15). In order to avoid solving a large coupled
nonlinear system of equations at every time step, we adopted the trapezoidal operator splitting (OS)
scheme [8], which belongs to the class of Strang type second-order symmetrical operator splitting
schemes [19], to split the linear terms from the nonlinear terms of (2.15). The large nonlinear
problem is decoupled, and hence we can solve the linear part and the nonlinear part individually
by implicit temporal schemes. The resulting nonlinear problems are local for each element and
they can be solved efficiently by an iterative scheme such as Newton’s method.

We denote the numerical solution of the ODE system (2.15) at t = tn by ~V n
m. To evolve the

system from step tn to tn+1, we apply the trapezoidal OS scheme for (2.15):

Step 1 – apply forward Euler method for the linear term at [tn, tn+ 1
2 ],

~v0,m = ~V n
m,

~v1,m = ~v0,m +
1

2
4tPm(tn)−1

[
[DWm(tn)−Qm(tn)−Km(tn)]~v0,m + D

∑

l=i,j,k

Wl(t
n)~v0,l

]
,

m = 1, · · · , N. (2.16)
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Step 2 – apply Crank-Nicholson method for the nonlinear term at [tn, tn+1], with ~v1,m as input
data:

~v2,m = ~v1,m +
1

2
4t[Pm(tn)−1 ~̃Fm(~v1,m) + Pm(tn+1)−1 ~̃Fm(~v2,m)]. (2.17)

The local nonlinear system (2.17) on the element m is solved by Newton iterations, with the initial
guess ~v1,m, for m = 1, · · · , N .

Step 3 – apply backward Euler method for the linear term at [tn+ 1
2 , tn+1], with ~v2,m as input data,

~v3,m = ~v2,m +
1

2
4tPm(tn+1)−1·

[
[DWm(tn+1)−Qm(tn+1)−Km(tn+1)]~v3,m + D

∑

l=i,j,k

Wl(t
n+1)~v3,l

]
,

~V n+1
m = ~v3,m, m = 1, · · · , N. (2.18)

The sparse linear system (2.18) is solved by the sparse linear solver “lin sol gen coordinate”of the
IMSL package.

2.4. Algorithm convergence analysis for a system with the exact solution
In this Section, we perform a numerical convergence analysis of the scheme for solving a parabolic
PDE on a moving and growing domain with an exact solution.
Example. Consider the two-dimensional nonlinear problem





Du
Dt

+ u∇ · ~a = ∇2u− u2 + e−2 cos(πx)2 cos(πy)2 + (2π2 − 1)e−t cos(πx) cos(πy)

−e−tπ sin(πx) cos(πy)x′ − e−tπ cos(πx) sin(πy)y′ + (σx + σy)e
−t cos(πx) cos(πy),

(x, y) ∈ (0, 1)× (0, 1);

~a = (x′, y′)T = (σxx, σyy)T ,

u(x, y, 0) = cos(πx) cos(πy),
(2.19)

with no flux boundary conditions. The initial domain is (0, 1) × (0, 1). For any (x, y), x′ = σxx
and y′ = σyy. Thus, at T = 1, the domain changes to (0, eσx)× (0, eσy). In this problem, we take
σx = σy = 0.5. The exact solution is u(x, y, t) = e−t cos(πx) cos(πy) where x and y are both
functions of the time variable. The simulation is carried up to T = 1.0. We perform the numerical
convergence analysis on successively refined meshes. The coarsest mesh is shown in Figure 1(a).
The refinement of the meshes is done in a uniform way, namely by cutting each triangle into four
smaller similar ones. The L1, L2 and L∞ errors, order of accuracy and CPU times are measured
and listed in Table 1. The time step size is taken to be ∆t = 0.1hmin(0). The second order accuracy
in Table 1 has the expected values.
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Table 1: CPU time, error, and order of accuracy of the DG-trapezoidal OS scheme for the example
in Section 2.4. Final time T = 1.0.

# of Cells CPU(s) L1 error order L2 error order L∞ error order
44 0.43 5.13E-02 - 4.15E-02 - 7.99E-02 -
176 4.32 1.39E-02 1.88 1.13E-02 1.87 2.26E-02 1.82
704 95.54 3.57E-03 1.96 2.91E-03 1.96 6.02E-03 1.90

2816 3975 9.04E-04 1.98 7.36E-04 1.98 1.55E-03 1.96
11264 258405 2.28E-04 1.99 1.85E-04 1.99 3.92E-04 1.99
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Figure 1: Meshes in the numerical simulations of Sections 2 and 3. (see text)
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3. Reaction-diffusion mechanism for limb skeletal pattern for-
mation

The computational mesh at t = 0 is shown in Figure 1(b). There are two color scales in the
simulation pictures (Fig. 2 (a)-(f)), blue-green-red scale, representing the activator morphogen
concentration in the LALI zone in which we solve the reaction-diffusion system (1.1) and (1.2),
and grayscale, representing formed skeletal elements of the ”frozen zone”) (see [7] and [16]). At
the very beginning there is only a LALI zone. The LALI zone grows at a constant rate, but due
to the decline in potency of the apical ectodermal ridge (reviewed in [16]), it also shinks in the
simulation in the x direction. The overall result is a time-dependent reduction in the width of
the LALI zone, as seen in the developing limb [20]. The moving velocity of the LALI zone is
determined by the ratio of the sizes of LALI zone at different stages, and it is approximated by
x′(t) = σx(x − t) + 1 with σx = −0.2896. The size of the LALI zone in the y direction stays
the same in the simulation, i.e., y′(t) = 0. The frozen zone does not move but its size grows at
the speed of v = 1 due to the cell condensation of the LALI zone. At every 0.05 unit of time, we
copy the concentration values on the computation grids of the left boundary of the LALI zone to
the new grid points in the frozen zone. From t = 0 to 1.4, λ = 1500 and δ = 4.7. From t = 1.4
to 2.4, λ = 5000 and δ = 4.9. From t = 2.4 to 3.0, λ = 16500 and δ = 4.9. The final time is
3.0 and the time step size ∆t is 2× 10−5 in the simulations. The pattern arises in a proximodistal
fashion as seen in amniote (lizard, bird and mammal) limbs, and the final form is similar to the
3-digit chicken wing.

We justify the change of parameters at the different phases of the simulation on the basis of
the key role played by the dramatic changes in the distributions of Hox gene products in the apical
zone at the different phases of limb development [14]. The Hox proteins are transcription factors
that regulate the levels of developmentally important signals such as the activating and inhibitory
morphogens of our model [21]. Although ”recombinant” limb buds with disrupted Hox protein
gradients can form limb skeletons with discrete jointed elements, the skeletons are grossly abnor-
mal [30, 18]. In the simulations shown in Fig. 3, the parameter value of λ is changed to λ = 17000
after time T = 2.40 when the two-digit has been formed. The final pattern under these conditions
has 4 digits, like the chicken leg.

4. Conclusion
The computational strategy based on a discontinuous Galerkin finite element method and em-
ployed in this paper for simulating a reaction-diffusion system in a moving and deforming domain
of nonsymmetrical shape, is both novel and numerically advanced. In biological terms, however,
it has enabled the confirmation, in principle of a simple, experimentally based mechanism for the
proximodistal increase in the number of skeletal elements during vertebrate limb development.
This basic framework should be extendable to 3 dimensions and imposition of nonuniform re-
sponse functions across the various limb axes will permit the formulation of hypotheses for the
individuation of skeletal elements and associated pattern asymmetries.
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Figure 2: Patterns of activator morphogen (color scale) and formed skeletal elements (gray scale)
at various times of development in the model limb, using standard parameter values. Color legend:
red corresponds to 5.0, green to 2.5, blue to 0.0. (a) at time T = 0.70; (b) at time T = 1.40; (c) at
time T = 2.00; (d) at time T = 2.40; (e) at time T = 2.70; (f) at time T = 3.00. Stages shown
correspond to chicken forelimb development between 3.5 and 7 days of incubation.
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Figure 3: Patterns of activator morphogen (color scale) and formed skeletal elements (gray scale)
at various times of development in the model limb, using standard parameter values except that
λ = 17000 after time T = 2.40. Color legend: red corresponds to 5.0, green to 2.5, blue to 0.0.
(a) at time T = 0.70; (b) at time T = 1.40; (c) at time T = 2.00; (d) at time T = 2.40; (e) at
time T = 2.70; (f) at time T = 3.00. Stages shown correspond to chicken hindlimb development
between 3.5 and 7 days of incubation.
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Appendix: Formulae for Mesh-Dependent Constants in Equa-
tion (2.15)

Denote dx
dt

as x′. Then

xm(t) =
xi(t) + xj(t) + xk(t)

3
,

ym(t) =
yi(t) + yj(t) + yk(t)

3
.

x′m =
x′i + x′j + x′k

3
,

y′m =
y′i + y′j + y′k

3
.

Let

ss = det




xi xj xk

yi yj yk

1 1 1


 ,

We have

|∆m(t)| = |ss|/2,

hm =

√
1

2
|ss|,

h′m =
1

2
√

2

(|ss|)′√
|ss| =

{
ss′
4hm

if ss >= 0
−ss′
4hm

if ss < 0

and

β = 10 · min
m=1,··· ,N

2|ss|
|ei|+ |ej|+ |ek| .

ξ′m =
(x′ − x′m)hm − (x− xm)h′m

h2
m

,

η′m =
(y′ − y′m)hm − (y − ym)h′m

h2
m

,

u′m = a′m + b′mξm + c′mηm + bmξ′m + cmη′m.
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The matrix Pm(t) =




p11(t) p12(t) p13(t)
p21(t) p22(t) p23(t)
p31(t) p32(t) p33(t)


:

p11(t) =

∫

4m(t)

dx,

p12(t) = p21(t) =

∫

4m(t)

ξm(t)dx,

p13(t) = p31(t) =

∫

4m(t)

ηm(t)dx,

p22(t) =

∫

4m(t)

ξm(t)2dx,

p23(t) = p32(t) =

∫

4m(t)

ξm(t)ηm(t)dx,

p33(t) =

∫

4m(t)

ηm(t)2dx.

The matrix Qm(t) =




q11(t) q12(t) q13(t)
q21(t) q22(t) q23(t)
q31(t) q32(t) q33(t)


:

q11(t) = q21(t) = q31(t) = 0,

q12(t) =

∫

4m(t)

ξ′m(t)dx,

q13(t) =

∫

4m(t)

η′m(t)dx,

q22(t) =

∫

4m(t)

ξm(t)ξ′m(t)dx,

q23(t) =

∫

4m(t)

ξm(t)η′m(t)dx,

q32(t) =

∫

4m(t)

ηm(t)ξ′m(t)dx,

q33(t) =

∫

4m(t)

ηm(t)η′m(t)dx.

The matrix Km(t) =




k11(t) k12(t) k13(t)
k21(t) k22(t) k23(t)
k31(t) k32(t) k33(t)


:
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k11(t) =

∫

4m(t)

∇ · ~adx,

k12(t) = k21(t) =

∫

4m(t)

ξm(t)∇ · ~adx,

k13(t) = k31(t)

∫

4m(t)

ηm(t)∇ · ~adx,

k22(t) =

∫

4m(t)

ξm(t)2∇ · ~adx,

k23(t) = k32(t)

∫

4m(t)

ξm(t)ηm(t)∇ · ~adx,

k33(t) =

∫

4m(t)

ηm(t)2∇ · ~adx.

The matrix Wm(t) =




wam1(t) wbm1(t) wcm1(t)
wam2(t) wbm2(t) wcm2(t)
wam3(t) wbm3(t) wcm3(t)


:

wam1(t) =
∑

l=i,j,k

(−βr1l),

wbm1(t) =
∑

l=i,j,k

(
r1lnl,x

2hm

− βr2lm),

wcm1(t) =
∑

l=i,j,k

(
r1lnl,y

2hm

− βr3lm),

wam2(t) =
∑

l=i,j,k

(−r1lnl,x

2hm

− βr2lm),

wbm2(t) =
∑

l=i,j,k

(−βs1mml),

wcm2(t) =
∑

l=i,j,k

(
r2lmnl,y − r3lmnl,x

2hm

− βs2mml),

wam3(t) =
∑

l=i,j,k

(−r1lnl,y

2hm

− βr3lm),

wbm3(t) =
∑

l=i,j,k

(
r3lmnl,x − r2lmnl,y

2hm

− βs2mml),

wcm3(t) =
∑

l=i,j,k

(−βs3mml).
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The matrix Wl(t) =




wal1(t) wbl1(t) wcl1(t)
wal2(t) wbl2(t) wcl2(t)
wal3(t) wbl3(t) wcl3(t)


, l = i, j, k:

wal1(t) = βr1l,

wbl1(t) =
r1lnl,x

2hl

+ βr2l,

wcl1(t) =
r1lnl,y

2hl

+ βr3l,

wal2(t) = −r1lnl,x

2hm

+ βr2lm,

wbl2(t) =
r2lmnl,x

2hl

− r2lnl,x

2hm

+ βs1lm,

wcl2(t) =
r2lmnl,y

2hl

− r3lnl,x

2hm

+ βs2lm,

wal3(t) = −r1lnl,y

2hm

+ βr3lm,

wbl3(t) =
r3lmnl,x

2hl

− r2lnl,y

2hm

+ βs3lm,

wcl3(t) =
r3lmnl,y

2hl

− r3lnl,y

2hm

+ βs4lm,

where

r1l =

∫

el(t)

dS, r2l =

∫

el(t)

ξl(t)dS, r3l =

∫

el(t)

ηl(t)dS,

r2lm =

∫

el(t)

ξm(t)dS, r3lm =

∫

el(t)

ηm(t)dS,

s1mml =

∫

el(t)

ξm(t)2dS, s2mml =

∫

el(t)

ξm(t)ηm(t)dS,

s3mml =

∫

el(t)

ηm(t)2dS, s1lm =

∫

el(t)

ξm(t)ξl(t)dS,

s2lm =

∫

el(t)

ξm(t)ηl(t)dS, s3lm =

∫

el(t)

ξl(t)ηm(t)dS, s4lm =

∫

el(t)

ηm(t)ηl(t)dS.
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